Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation.
نویسندگان
چکیده
Exposure to arsenic affects large human populations worldwide and has been associated with a long list of human diseases, including skin, bladder, lung, and liver cancers, diabetes, and cardiovascular disorders. In addition, there are large individual differences in susceptibility to arsenic-induced diseases, which are frequently associated with different patterns of arsenic metabolism. Several underlying mechanisms, such as genetic polymorphisms and epigenetics, have been proposed, as these factors closely impact the individuals' capacity to metabolize arsenic. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that perturbations of the gut microbial communities affect the spectrum of metabolized arsenic species and subsequent toxicological effects. In this study, we used an animal model with an altered gut microbiome induced by bacterial infection, 16S rRNA gene sequencing, and inductively coupled plasma mass spectrometry-based arsenic speciation to examine the effect of gut microbiome perturbations on the biotransformation of arsenic. Metagenomics sequencing revealed that bacterial infection significantly perturbed the gut microbiome composition in C57BL/6 mice, which in turn resulted in altered spectra of arsenic metabolites in urine, with inorganic arsenic species and methylated and thiolated arsenic being perturbed. These data clearly illustrated that gut microbiome phenotypes significantly affected arsenic metabolic reactions, including reduction, methylation, and thiolation. These findings improve our understanding of how infectious diseases and environmental exposure interact and may also provide novel insight regarding the gut microbiome composition as a new risk factor of individual susceptibility to environmental chemicals.
منابع مشابه
Gut Microbiome Phenotypes Driven by Host Genetics Affect Arsenic Metabolism
Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic...
متن کاملExposure to inorganic arsenic can lead to gut microbe perturbations and hepatocellular carcinoma
Arsenic is a carcinogenic environmental factor found in food and drinking water around the world. The mechanisms in which arsenic alters homeostasis are not fully understood. Over the past few decades, light has been shed on varying mechanisms in which arsenic induces cancer. Such mechanisms include gut microbe perturbations, genotoxic effects, and epigenetic modification. Gut microbe perturbat...
متن کاملArsenic Exposure Perturbs the Gut Microbiome and Its Metabolic Profile in Mice: An Integrated Metagenomics and Metabolomics Analysis
BACKGROUND The human intestine is host to an enormously complex, diverse, and vast microbial community-the gut microbiota. The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development, epithelial homeostasis, and so forth. However, the composition and diversity of the gut microbiome can be readily affected by external factors, which raise...
متن کاملBiotransformation of metal(loid)s by intestinal microorganisms*
Many metals and metalloids undergo complex biotransformation processes by micro organisms in the environment, namely, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, Bi, and Po. Though the human intestine harbors a highly diverse and metabolically active micro bial community, the knowledge on metal(loid) biotransformation by gut microbiota is limited. Microbial metal(loid) metabolism in the gut is ...
متن کاملFire in the Belly? Sulfur-Reducing Gut Microbes Fuel Arsenic Thiolation
Inorganic arsenic, a ubiquitous environmental toxicant, is well known for its harmful effects in humans, including cancer, diabetes, and cardiovascular disease. Organic forms of arsenic, such as monomethylarsonic acid (MMAV), are generally considered less toxic than inorganic arsenicals. Researchers report in this issue of EHP that certain bacteria in the human colon can promote the conversion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical research in toxicology
دوره 26 12 شماره
صفحات -
تاریخ انتشار 2013