Only one pRNA hexamer but multiple copies of the DNA-packaging protein gp16 are needed for the motor to package bacterial virus phi29 genomic DNA.
نویسندگان
چکیده
A common feature in the maturation of linear dsDNA viruses is that the lengthy viral genome is translocated with remarkable velocity into a limited space within a preformed protein shell using ATP as motor energy. Most biomotors, such as myosin, kinesin, DNA-helicase, and RNA polymerase, contain one ATP-binding component that acts processively. An examination of the well-studied dsDNA viruses reveals that DNA packaging motors involve two nonstructural components. Which component of the motor is the integrated processive factor to turn the motor has not been identified. In bacterial virus phi 29, these two components consist of a gp16 protein and an RNA molecule called pRNA. We have previously predicted and recently confirmed that gp16 binds ATP. It is generally believed that gp16 serves as an ATP-binding and processive component to drive the motor. In this article, phi 29 DNA-packaging intermediates were purified in quantity and examined to differentiate the role between gp16 and pRNA. It was found that the pRNA hexamer is an integral motor component, while gp16 is not stably bound. Only one pRNA hexamer, but multiple copies of gp16, were needed to accomplish DNA packaging. pRNA functions continuously during the entire DNA translocation process, suggesting that pRNA is a vital part of the DNA packaging motor.
منابع مشابه
Strand and nucleotide-dependent ATPase activity of gp16 of bacterial virus phi29 DNA packaging motor.
Similar to the assembly of other dsDNA viruses, bacterial virus phi29 uses a motor to translocate its DNA into a procapsid, with the aid of protein gp16 that binds to pRNA 5'/3' helical region. To investigate the mechanism of the motor action, the kinetics of the ATPase activity of gp16 was evaluated as a function of DNA structure (ss- or ds-stranded) or chemistry (purine or pyrimidine). The k(...
متن کاملInteraction of gp16 with pRNA and DNA for genome packaging by the motor of bacterial virus phi29.
One striking feature in the assembly of linear double-stranded (ds) DNA viruses is that their genome is translocated into a preformed protein coat via a motor involving two non-structural components with certain characteristics of ATPase. In bacterial virus phi29, these two components include the protein gp16 and a packaging RNA (pRNA). The structure and function of other phi29 motor components...
متن کاملEngineering of the fluorescent-energy-conversion arm of phi29 DNA packaging motor for single-molecule studies.
The bacteriophage phi29 DNA packaging motor contains a protein core with a central channel comprising twelve copies of re-engineered gp10 protein geared by six copies of packaging RNA (pRNA) and a DNA packaging protein gp16 with unknown copies. Incorporation of this nanomotor into a nanodevice would be beneficial for many applications. To this end, extension and modification of the motor compon...
متن کاملUse of PEG to acquire highly soluble DNA-packaging enzyme gp16 of bacterial virus phi29 for stoichiometry quantification.
All linear dsDNA viruses package their genome into a preformed procapsid via a ATP-driving motor involving two nonstructural enzymes or ATPase. This essential viral replication step has been investigated in the quest for new antiviral drugs. These DNA-packaging motors could be potential parts in nanotechnology. But both the low solubility and self-aggregation of all nonstructural enzymes have s...
متن کاملBinding of pRNA to the N-terminal 14 amino acids of connector protein of bacteriophage phi29
During assembly, bacterial virus phi29 utilizes a motor to insert genomic DNA into a preformed protein shell called the procapsid. The motor contains one twelve-subunit connector with a 3.6 nm central channel for DNA transportation, six viral-encoded RNA (packaging RNA or pRNA) and a protein, gp16, with unknown stoichiometry. Recent DNA-packaging models proposed that the 5-fold procapsid vertex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Virology
دوره 309 1 شماره
صفحات -
تاریخ انتشار 2003