NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference
نویسندگان
چکیده
MOTIVATION Reconstruction of gene regulatory networks (GRNs) is of utmost interest to biologists and is vital for understanding the complex regulatory mechanisms within the cell. Despite various methods developed for reconstruction of GRNs from gene expression profiles, they are notorious for high false positive rate owing to the noise inherited in the data, especially for the dataset with a large number of genes but a small number of samples. RESULTS In this work, we present a novel method, namely NARROMI, to improve the accuracy of GRN inference by combining ordinary differential equation-based recursive optimization (RO) and information theory-based mutual information (MI). In the proposed algorithm, the noisy regulations with low pairwise correlations are first removed by using MI, and the redundant regulations from indirect regulators are further excluded by RO to improve the accuracy of inferred GRNs. In particular, the RO step can help to determine regulatory directions without prior knowledge of regulators. The results on benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge and experimentally determined GRN of Escherichia coli show that NARROMI significantly outperforms other popular methods in terms of false positive rates and accuracy. AVAILABILITY All the source data and code are available at: http://csb.shu.edu.cn/narromi.htm.
منابع مشابه
Exploring the Boundaries of Gene Regulatory Network Inference
To understand how the components of a complex system like a living cell interact and regulate each other, we need to collect data about how the components respond to system perturbations. Such data can then be used to solve the inverse problem of inferring a network that describes how the pieces influence each other. The work in this thesis concerns modelling of the regulatory system of a cell,...
متن کاملIntegration of multiple data sources for gene network inference using genetic perturbation data
Background The inference of gene regulatory networks is of great interest and has various applications. The recent advances in high-throughout biological data collection have facilitated the construction and understanding of gene regulatory networks in many model organisms. However, the inference of gene networks from large-scale human genomic data can be challenging. Generally, it is difficult...
متن کاملCircular Mean Filtering For Textures Noise Reduction
In this paper, a special preprocessing operations (filter) is proposed to decrease the effects of noise of textures. This filter using average of circular neighbor points (Cmean) to reduce noise effect. Comparing this filter with other average filters such as square mean filter and square median filter indicates that it provides more noise reduction and increases the classification accuracy...
متن کاملIntegrative random forest for gene regulatory network inference
MOTIVATION Gene regulatory network (GRN) inference based on genomic data is one of the most actively pursued computational biological problems. Because different types of biological data usually provide complementary information regarding the underlying GRN, a model that integrates big data of diverse types is expected to increase both the power and accuracy of GRN inference. Towards this goal,...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 29 1 شماره
صفحات -
تاریخ انتشار 2013