Constructing and training feed-forward neural networks for pattern classification
نویسندگان
چکیده
A new approach of constructing and training neural networks for pattern classi$cation is proposed. Data clusters are generated and trained sequentially based on distinct local subsets of the training data. Obtained clusters are then used to construct a feed-forward network, which is further trained using standard algorithms operating on the global training set. The network obtained using this approach e6ectively inherits the knowledge from the local training procedure before improving on its generalization ability through the subsequent global training. Various experiments demonstrate the superiority of this approach over competing methods. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
منابع مشابه
Training neural networks with ant colony optimization algorithms for pattern classification
Feed-forward neural networks are commonly used for pattern classification. The classification accuracy of feed-forward neural networks depends on the configuration selected and the training process. Once the architecture of the network is decided, training algorithms, usually gradient descent techniques, are used to determine the connection weights of the feed-forward neural network. However, g...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملEffect of sound classification by neural networks in the recognition of human hearing
In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...
متن کاملTraining of Feed-Forward Neural Networks for Pattern-Classification Applications Using Music Inspired Algorithm
There have been numerous biologically inspired algorithms used to train feed-forward artificial neural networks such as generic algorithms, particle swarm optimization and ant colony optimization. The Harmony Search (HS) algorithm is a stochastic meta-heuristic that is inspired from the improvisation process of musicians. HS is used as an optimization method and reported to be a competitive alt...
متن کاملPerformance Evaluation Analysis of MLP & DG-RBF Feed Forward Neural Networks for Pattern Classification of Handwritten English Curve Scripts
The purpose of this study is to evaluate the performance analysis of multilayer feed forward neural networks trained with back propagation algorithm & descent gradient Radial basis function network for the pattern classification of hand written curve script. This analysis has been done for handwritten text of three letters and for the individual English vowels. This analysis in the performance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 36 شماره
صفحات -
تاریخ انتشار 2003