. A P ] 6 A pr 2 00 7 LOCAL WELL - POSEDNESS OF NONLINEAR DISPERSIVE EQUATIONS ON MODULATION SPACES

نویسنده

  • K. A. Okoudjou
چکیده

By using tools of time-frequency analysis, we obtain some improved local well-posedness results for the NLS, NLW and NLKG equations with Cauchy data in modulation spaces M 0,s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Well-posedness of Nonlinear Dispersive Equations on Modulation Spaces

By using tools of time-frequency analysis, we obtain some improved local well-posedness results for the NLS, NLW and NLKG equations with Cauchy data in modulation spaces M 0,s .

متن کامل

2 00 7 Ill - Posedness Issues for Nonlinear Dispersive Equations

These notes are devoted to the notion of well-posedness of the Cauchy problem for nonlinear dispersive equations. We present recent methods for proving ill-posedness type results for dispersive PDE's. The common feature in the analysis is that the proof of such results requires the construction of high frequency approximate solutions on small time intervals (possibly depending on the frequency)...

متن کامل

. A P ] 2 1 O ct 2 00 2 LOCAL WELL - POSEDNESS FOR DISPERSION GENERALIZED BENJAMIN - ONO EQUATIONS

In this paper we study local well-posedness in the energy space for a family of dispersive equations that can be seen as dispersive " interpolations " between the KdV and the Benjamin-Ono equation.

متن کامل

Gevrey regularity for a class of water-wave models

MSC: 35Q53 35A07 Keywords: Local well posedness Dispersive smoothing Real-analytic solutions Higher-order water-wave models a b s t r a c t Local well posedness for a class of higher-order nonlinear dispersive partial differential equations is obtained in spaces of functions analytic on a strip around the real axis. The proof relies on estimates in space–time norms adapted to the linear part of...

متن کامل

On the Cauchy problem for higher-order nonlinear dispersive equations

We study the higher-order nonlinear dispersive equation ∂tu+ ∂ 2j+1 x u = ∑ 0≤j1+j2≤2j aj1,j2∂ j1 x u∂ j2 x u, x, t ∈ R. where u is a real(or complex-) valued function. We show that the associated initial value problem is well posed in weighted Besov and Sobolev spaces for small initial data. We also prove ill-posedness results when a0,k 6= 0 for some k > j, in the sense that this equation cann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008