Regularization parameter selection in indirect regression by residual based bootstrap
نویسندگان
چکیده
Residual-based analysis is generally considered a cornerstone of statistical methodology. For a special case of indirect regression, we investigate the residual-based empirical distribution function and provide a uniform expansion of this estimator, which is also shown to be asymptotically most precise. This investigation naturally leads to a completely data-driven technique for selecting a regularization parameter used in our indirect regression function estimator. The resulting methodology is based on a smooth bootstrap of the model residuals. A simulation study demonstrates the effectiveness of our approach.
منابع مشابه
Asymptotic Properties of the Residual Bootstrap for Lasso Estimators
Abstract. In this article, we derive the asymptotic distribution of the bootstrapped Lasso estimator of the regression parameter in a multiple linear regression model. It is shown that under some mild regularity conditions on the design vectors and the regularization parameter, the bootstrap approximation converges weakly to a random measure. The convergence result rigorously establishes a prev...
متن کاملNOVEL RESAMPLING METHODS FOR TUNING PARAMETER SELECTION IN ROBUST SPARSE REGRESSION MODELING by
The robust lasso-type regularized regression is a useful tool for simultaneous estimation and variable selection even in the presence of outliers. Crucial issues in the robust modeling procedure include the selection of regularization parameters and also a tuning constant in outlier detection. Although the performance of the robust sparse regression strongly depends on the proper choice of thes...
متن کاملA Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method
A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...
متن کاملSmall Sample Bootstrap Confidence Intervals for Long-Memory Parameter
The log periodogram regression is widely used in empirical applications because of its simplicity, since only a least squares regression is required to estimate the memory parameter, d, its good asymptotic properties and its robustness to misspecification of the short term behavior of the series. However, the asymptotic distribution is a poor approximation of the (unknown) finite sample distrib...
متن کاملLocal Bootstrap Approach for the Estimation of the Memory Parameter
The log periodogram regression is widely used in empirical applications because of its simplicity to estimate the memory parameter, d, its good asymptotic properties and its robustness to misspecification of the short term behavior of the series. However, the asymptotic distribution is a poor approximation of the (unknown) finite sample distribution if the sample size is small. Here the finite ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016