Theoretical Studies of the Adsorption and Migration Behavior of Boron Atoms on Hydrogen-Terminated Diamond (001) Surface

نویسندگان

  • Xuejie Liu
  • Congjie Kang
  • Haimao Qiao
  • Yuan Ren
  • Xin Tan
  • Shiyang Sun
چکیده

Abstract: The adsorption and migration activation energies of boron atoms on a hydrogen-terminated diamond (001) surface were calculated using first principles methods based on density functional theory. The values were then used to investigate the behavior of boron atoms in the deposition process of B-doped diamond film. On the fully hydrogen-terminated surface, the adsorption energy of a boron atom is relatively low and the maximum value is 1.387 eV. However, on the hydrogen-terminated surface with one open radical site or two open radical sites, the adsorption energy of a boron atom increases to 4.37 eV, and even up to 5.94 eV, thereby forming a stable configuration. When a boron atom deposits nearby a radical site, it can abstract a hydrogen atom from a surface carbon atom, and then form a BH radical and create a new radical site. This study showed that the number and distribution of open radical sites, namely, the adsorption of hydrogen atoms and the abstraction of surface hydrogen atoms, can influence the adsorption and migration of boron atoms on hydrogen-terminated diamond surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boron-doped diamond: Investigation of the stability of surface-doping versus bulk-doping using cyclic cluster model calculations

Boron-doped bulk diamond and the boron-doped hydrogen terminated (001) surface of diamond were investigated using the cyclic cluster model. Structure and stability of the hydrogen-terminated (001) surface were calculated and compared with experimental and other theoretical results from the literature. Boron-doping was modeled by substitution of a carbon atom by a boron atom in different positio...

متن کامل

Quantum Theoretical studies of Nanostructures onto Hydrogen Adsorption on V-surface

We have studied the adsorption processes of H2 on the V (100) surface of Vanadium using self consistent field theory.Dissociative adsorptions of H2 are significantly favored compared to molecular adsorptions. There is a significant charge transfer from the first layer of the vanadium surface to the Hydrogen atoms. Three possible adsorption sites, top, bridge and center site, were considered in ...

متن کامل

Theoretical study of 2,3,7,8-tetrachlorodibenzo-para-dioxine removal by boron nitride-nanotube (BNNT): QSAR, IR-DFT

The study examined corrosion inhibition of corrosion inhibition of 5-methyl-2H-imidazol-4-carboxaldehyde and 1H-Indole-3-carboxaldehyde on mild steel in acidic medium using weight loss and Density Functional Theory (DFT) methods. DFT calculations were carried out at B3LYP/6-31+G** level of theory in aqueous medium on the molecular structures to describe electronic parameters. The values of ther...

متن کامل

THEORETICAL STUDIES OF CHANGES IN PROPERTIES OF 5-FLUORO-2-DEOXYURIDINE (FUDR) ANTICANCER DRUG BY ADSORPTION ON BORON NITRIDE NANOTUBE (5, 5-11)

Background & Aims: Drugs are highly active due to their many functional groups and can be easily destroyed by stomach acid and excreted before reaching target tissue. Thus, by encapsulating, a sheath is placed around drug to reduce reactivity of the drug due to stereo electronic resonance with nanotube and consequently drug stays longer in body. As a result, you can consume a smaller dose of dr...

متن کامل

Theoretical insights into the adsorption behavior of CO molecules on the pure and Vn-doped BN nanotubes

Interaction of pure and Vn-doped (8, 0), (12, 0) and (16, 0) boron nitride nanotubes with CO molecules was studied using B3LYP/6-311++G(d) theoretical level. Substituting V instead of B atoms, increased the reactivity of nanotube. From the results, the complex stability depends on the direction and the number of the CO molecules interacted with the nanotube. In this work, the quantum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017