Learning Semi Naïve Bayes Structures by Estimation of Distribution Algorithms
نویسندگان
چکیده
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier called naı̈ve Bayes is competitive with state of the art classifiers. This simple approach stands from assumptions of conditional independence among features given the class. Improvements in accuracy of naı̈ve Bayes has been demonstrated by a number of approaches, collectively named semi naı̈ve Bayes classifiers. Semi naı̈ve Bayes classifiers are usually based on the search of specific values or structures. The learning process of these classifiers is usually based on greedy search algorithms. In this paper we propose to learn these semi naı̈ve Bayes structures through estimation of distribution algorithms, which are non-deterministic, stochastic heuristic search strategies. Experimental tests have been done with 21 data sets from the UCI repository.
منابع مشابه
Learning Semi Naı̈ve Bayes Structures by Estimation of Distribution Algorithms
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier called naı̈ve Bayes is competitive with state of the art classifiers. This simple approach stands from assumptions of conditional independence among features given the class. Improvements in accuracy of naı̈ve Bayes has been demonstrated by a number of approaches, collectively named semi naı̈ve Bayes classi...
متن کاملLearning Statistical Structure for Object Detection
Many classes of images exhibit sparse structuring of statistical dependency. Each variable has strong statistical dependency with a small number of other variables and negligible dependency with the remaining ones. Such structuring makes it possible to construct a powerful classifier by only representing the stronger dependencies among the variables. In particular, a seminaïve Bayes classifier ...
متن کاملInteractive Segmentation in Multimodal Medical Imagery using a Bayesian Transductive Learning Approach
Labeled training data in the medical domain is rare and expensive to obtain. The lack of labeled multimodal medical image data is a major obstacle for devising learning-based interactive segmentation tools. Transductive learning (TL) or semi-supervised learning (SSL) offers a workaround by leveraging unlabeled and labeled data to infer labels for the test set given a small portion of label info...
متن کاملSupervised Classification with Gaussian Networks. Filter and Wrapper Approaches
Bayesian network based classifiers are only able to handle discrete variables. They assume that variables are sampled from a multinomial distribution and most real-world domains involves continuous variables. A common practice to deal with continuous variables is to discretize them, with a subsequent loss of information. The continuous classifiers presented in this paper are supported by the Ga...
متن کاملBayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003