Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation.

نویسندگان

  • Lydia Danglot
  • Thomas Freret
  • Nicolas Le Roux
  • Nicolas Narboux Nême
  • Andrea Burgo
  • Vincent Hyenne
  • Anne Roumier
  • Vincent Contremoulins
  • François Dauphin
  • Jean-Charles Bizot
  • Guilan Vodjdani
  • Patricia Gaspar
  • Michel Boulouard
  • Jean-Christophe Poncer
  • Thierry Galli
  • Marie-Christine Simmler
چکیده

Vezatin is an integral membrane protein associated with cell-cell adhesion complex and actin cytoskeleton. It is expressed in the developing and mature mammalian brain, but its neuronal function is unknown. Here, we show that Vezatin localizes in spines in mature mouse hippocampal neurons and codistributes with PSD95, a major scaffolding protein of the excitatory postsynaptic density. Forebrain-specific conditional ablation of Vezatin induced anxiety-like behavior and impaired cued fear-conditioning memory response. Vezatin knock-down in cultured hippocampal neurons and Vezatin conditional knock-out in mice led to a significantly increased proportion of stubby spines and a reduced proportion of mature dendritic spines. PSD95 remained tethered to presynaptic terminals in Vezatin-deficient hippocampal neurons, suggesting that the reduced expression of Vezatin does not compromise the maintenance of synaptic connections. Accordingly, neither the amplitude nor the frequency of miniature EPSCs was affected in Vezatin-deficient hippocampal neurons. However, the AMPA/NMDA ratio of evoked EPSCs was reduced, suggesting impaired functional maturation of excitatory synapses. These results suggest a role of Vezatin in dendritic spine morphogenesis and functional synaptic maturation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KIS, a kinase associated with microtubule regulators, enhances translation of AMPA receptors and stimulates dendritic spine remodeling.

Local regulation of protein synthesis allows a neuron to rapidly alter the proteome in response to synaptic signals, an essential mechanism in synaptic plasticity that is altered in many neurological diseases. Synthesis of many synaptic proteins is under local control and much of this regulation occurs through structures termed RNA granules. KIS is a protein kinase that associates with stathmin...

متن کامل

Rapid Induction of Dendritic Spine Morphogenesis by trans-Synaptic EphrinB-EphB Receptor Activation of the Rho-GEF Kalirin

The morphogenesis of dendritic spines, the major sites of excitatory synaptic transmission in the brain, is important in synaptic development and plasticity. We have identified an ephrinB-EphB receptor trans-synaptic signaling pathway which regulates the morphogenesis and maturation of dendritic spines in hippocampal neurons. Activation of the EphB receptor induces translocation of the Rho-GEF ...

متن کامل

The E3 ubiquitin ligase IDOL regulates synaptic ApoER2 levels and is important for plasticity and learning

Neuronal ApoE receptors are linked to learning and memory, but the pathways governing their abundance, and the mechanisms by which they affect the function of neural circuits are incompletely understood. Here we demonstrate that the E3 ubiquitin ligase IDOL determines synaptic ApoER2 protein levels in response to neuronal activation and regulates dendritic spine morphogenesis and plasticity. ID...

متن کامل

Cadherin Regulates Dendritic Spine Morphogenesis

Synaptic remodeling has been postulated as a mechanism underlying synaptic plasticity, and cadherin adhesion molecules are thought to be a regulator of such a process. We examined the effects of cadherin blockage on synaptogenesis in cultured hippocampal neurons. This blockade resulted in alterations of dendritic spine morphology, such as filopodia-like elongation of the spine and bifurcation o...

متن کامل

Activity of the AMPA receptor regulates drebrin stabilization in dendritic spine morphogenesis.

Spine morphogenesis mainly occurs during development as a morphological shift from filopodia-like thin protrusions to bulbous ones. We have previously reported that synaptic clustering of the actin-binding protein drebrin in dendritic filopodia governs spine morphogenesis and synaptic PSD-95 clustering. Here, we report the activity-dependent cellular mechanisms for spine morphogenesis, in which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 26  شماره 

صفحات  -

تاریخ انتشار 2012