Asymptotic convergence of spectral inverse iterations for stochastic eigenvalue problems
نویسندگان
چکیده
We consider and analyze applying a spectral inverse iteration algorithm and its subspace iteration variant for computing eigenpairs of an elliptic operator with random coefficients. With these iterative algorithms the solution is sought from a finite dimensional space formed as the tensor product of the approximation space for the underlying stochastic function space, and the approximation space for the underlying spatial function space. Sparse polynomial approximation is employed to obtain the first one, while classical finite elements are employed to obtain the latter. An error analysis is presented for the asymptotic convergence of the spectral inverse iteration to the smallest eigenvalue and the associated eigenvector of the problem. A series of detailed numerical experiments supports the conclusions of this analysis. Numerical experiments are also presented for the spectral subspace iteration, and convergence of the algorithm is observed in an example case, where the eigenvalues cross within the parameter space. The outputs of both algorithms are verified by comparing to solutions obtained by a sparse stochastic collocation method.
منابع مشابه
Inexact Inverse Iterations for the Generalized Eigenvalue Problems
In this paper, we study an inexact inverse iteration with inner-outer iterations for solving the generalized eigenvalue problem Ax = Bx; and analyze how the accuracy in the inner iterations aaects the convergence of the outer iterations. By considering a special stopping criterion depending on a threshold parameter, we show that the outer iteration converges linearly with the threshold paramete...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملInexact Numerical Methods for Inverse Eigenvalue Problems
In this paper, we survey some of the latest development in using inexact Newton-like methods for solving inverse eigenvalue problems. These methods require the solutions of nonsymmetric and large linear systems. One can solve the approximate Jacobian equation by iterative methods. However, iterative methods usually oversolve the problem in the sense that they require far more (inner) iterations...
متن کاملAn Inexact Cayley Transform Method For Inverse Eigenvalue Problems
The Cayley transform method is a Newton-like method for solving inverse eigenvalue problems. If the problem is large, one can solve the Jacobian equation by iterative methods. However, iterative methods usually oversolve the problem in the sense that they require far more (inner) iterations than is required for the convergence of the Newton (outer) iterations. In this paper, we develop an inexa...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1706.03558 شماره
صفحات -
تاریخ انتشار 2017