Characterizations of peripherally multiplicative mappings between real function algebras

نویسنده

  • Kristopher Lee
چکیده

Let X be a compact Hausdorff space; let τ : X → X be a topological involution; and let A ⊂ C(X, τ) be a real function algebra. Given an f ∈ A, the peripheral spectrum of f is the set σπ(f) of spectral values of f of maximum modulus. We demonstrate that if T1, T2 : A → B and S1, S2 : A → A are surjective mappings between real function algebras A ⊂ C(X, τ) and B ⊂ C(Y, φ) that satisfy σπ(T1(f)T2(g)) = σπ(S1(f)S2(g)) for all f, g ∈ A, then there exists a homeomorphism ψ : Ch(B) → Ch(A) between the Choquet boundaries such that (ψ ◦ φ)(y) = (τ ◦ ψ)(y) for all y ∈ Ch(B), and there exist functions κ1, κ2 ∈ B, with κ−1 1 = κ2, such that Tj(f)(y) = κj(y)Sj(f)(ψ(y)) for all f ∈ A, all y ∈ Ch(B), and j = 1, 2. As a corollary, it is shown that if either Ch(A) or Ch(B) is a minimal boundary (with respect to inclusion) for its corresponding algebra, then the same result holds for surjective mappings T1, T2 : A → B and S1, S2 : A → A that satisfy σπ(T1(f)T2(g)) ∩ σπ(S1(f)S2(g)) 6= ∅ for all f, g ∈ A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONTINUITY IN FUNDAMENTAL LOCALLY MULTIPLICATIVE TOPOLOGICAL ALGEBRAS

Abstract. In this paper, we first derive specific results concerning the continuity and upper semi-continuity of the spectral radius and spectrum functions on fundamental locally multiplicative topological algebras. We continue our investigation by further determining the automatic continuity of linear mappings and homomorphisms in these algebras.

متن کامل

A class of new results in FLM algebras

In this paper, we first derive some results by using the Gelfand spectrum and spectrum in FLM algebras. Then, the characterizations of multiplicative linear mappings are also discussed in these algebras.

متن کامل

CHARACTERIZATIONS OF EXTREMELY AMENABLE FUNCTION ALGEBRAS ON A SEMIGROUP

Let S be a semigroup. In certain cases we give some characterizations of extreme amenability of S and we show that in these cases extreme left amenability and extreme right amenability of S are equivalent. Also when S is a compact topological semigroup, we characterize extremely left amenable subalgebras of C(S), where C(S) is the space of all continuous bounded real valued functions on S

متن کامل

Generalizations of Weakly Peripherally Multiplicative Maps Between Uniform Algebras

Let A and B be uniform algebras on first-countable, compact Hausdorff spaces X and Y , respectively. For f ∈ A, the peripheral spectrum of f , denoted by σπ(f) = {λ ∈ σ(f) : |λ| = ‖f‖}, is the set of spectral values of maximum modulus. A map T : A → B is weakly peripherally multiplicative if σπ(T (f)T (g)) ∩ σπ(fg) 6= ∅ for all f, g ∈ A. We show that if T is a surjective, weakly peripherally mu...

متن کامل

Almost n-Multiplicative Maps‎ between‎ ‎Frechet Algebras

For the Fr'{e}chet algebras $(A, (p_k))$ and $(B, (q_k))$ and $n in mathbb{N}$, $ngeq 2$, a linear map $T:A rightarrow B$ is called textit{almost $n$-multiplicative}, with respect to $(p_k)$ and $(q_k)$, if there exists $varepsilongeq 0$ such that$$q_k(Ta_1a_2cdots a_n-Ta_1Ta_2cdots Ta_n)leq varepsilon p_k(a_1) p_k(a_2)cdots p_k(a_n),$$for each $kin mathbb{N}$ and $a_1, a_2, ldots, a_nin A$. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015