YZU-NLP Team at SemEval-2016 Task 4: Ordinal Sentiment Classification Using a Recurrent Convolutional Network

نویسندگان

  • Yunchao He
  • Liang-Chih Yu
  • Chin-Sheng Yang
  • K. Robert Lai
  • Weiyi Liu
چکیده

Sentiment analysis of tweets has attracted considerable attention recently for potential use in commercial and public sector applications. Typical sentiment analysis classifies the sentiment of sentences into several discrete classes (e.g., positive and negative). The aim of Task 4 subtask C of SemEval-2016 is to classify the sentiment of tweets into an ordinal five-point scale. In this paper, we present a system that uses word embeddings and recurrent convolutional networks to complete the competition task. The word embeddings provide a continuous vector representation of words for the recurrent convolutional network to use in building sentence vectors for multipoint classification. The proposed method ranked second among eleven teams in terms of micro-averaged MAE (mean absolute error) and eighth for macro-averaged MAE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INSIGHT-1 at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification and Quantification

This paper describes our deep learning-based approach to sentiment analysis in Twitter as part of SemEval-2016 Task 4. We use a convolutional neural network to determine sentiment and participate in all subtasks, i.e. two-point, three-point, and five-point scale sentiment classification and two-point and five-point scale sentiment quantification. We achieve competitive results for two-point sca...

متن کامل

UniPI at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification

The paper describes our submission to the task on Sentiment Analysis on Twitter at SemEval 2016. The approach is based on a Deep Learning architecture using convolutional neural networks. The approach used only word embeddings as features. The submission used embeddings created from a corpus of news articles. We report on further experiments using embeddings built for a corpus of tweets as well...

متن کامل

ELiRF-UPV at SemEval-2017 Task 4: Sentiment Analysis using Deep Learning

This paper describes the participation of ELiRF-UPV team at task 4 of SemEval2017. Our approach is based on the use of convolutional and recurrent neural networks and the combination of general and specific word embeddings with polarity lexicons. We participated in all of the proposed subtasks both for English and Arabic languages using the same system with small variations.

متن کامل

LIA at SemEval-2017 Task 4: An Ensemble of Neural Networks for Sentiment Classification

This paper describes the system developed at LIA for the SemEval-2017 evaluation campaign. The goal of Task 4.A was to identify sentiment polarity in tweets. The system is an ensemble of Deep Neural Network (DNN) models: Convolutional Neural Network (CNN) and Recurrent Neural Network Long Short-Term Memory (RNN-LSTM). We initialize the input representation of DNN with different sets of embeddin...

متن کامل

TSA-INF at SemEval-2017 Task 4: An Ensemble of Deep Learning Architectures Including Lexicon Features for Twitter Sentiment Analysis

This paper describes the submission of team TSA-INF to SemEval-2017 Task 4 Subtask A. The submitted system is an ensemble of three varying deep learning architectures for sentiment analysis. The core of the architecture is a convolutional neural network that performs well on text classification as is. The second subsystem is a gated recurrent neural network implementation. Additionally, the thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016