How does the modular organization of entorhinal grid cells develop?

نویسندگان

  • Praveen K. Pilly
  • Stephen Grossberg
چکیده

The entorhinal-hippocampal system plays a crucial role in spatial cognition and navigation. Since the discovery of grid cells in layer II of medial entorhinal cortex (MEC), several types of models have been proposed to explain their development and operation; namely, continuous attractor network models, oscillatory interference models, and self-organizing map (SOM) models. Recent experiments revealing the in vivo intracellular signatures of grid cells (Domnisoru et al., 2013; Schmidt-Heiber and Hausser, 2013), the primarily inhibitory recurrent connectivity of grid cells (Couey et al., 2013; Pastoll et al., 2013), and the topographic organization of grid cells within anatomically overlapping modules of multiple spatial scales along the dorsoventral axis of MEC (Stensola et al., 2012) provide strong constraints and challenges to existing grid cell models. This article provides a computational explanation for how MEC cells can emerge through learning with grid cell properties in modular structures. Within this SOM model, grid cells with different rates of temporal integration learn modular properties with different spatial scales. Model grid cells learn in response to inputs from multiple scales of directionally-selective stripe cells (Krupic et al., 2012; Mhatre et al., 2012) that perform path integration of the linear velocities that are experienced during navigation. Slower rates of grid cell temporal integration support learned associations with stripe cells of larger scales. The explanatory and predictive capabilities of the three types of grid cell models are comparatively analyzed in light of recent data to illustrate how the SOM model overcomes problems that other types of models have not yet handled.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل شبکه ی عصبی از نگاشت سلول‌های شبکه به سلول‌های مکانی

Abstract: Medial entorhinal cortex is known to be the hub of a brain system for navigation and spatial representation. These cells increase firing frequency at multiple regions in the environment, arranged in regular triangular grids. Each cell has some properties including spacing, orientation, and phase shift of the nodes of its grid. Entorhinal cortex is commonly perceived to be the major in...

متن کامل

Selforganization of modular activity of grid cells

A unique topographical representation of space is found in the concerted activity of grid cells in the rodent medial entorhinal cortex. Many among the principal cells in this region exhibit a hexagonal firing pattern, in which each cell expresses its own set of place fields (spatial phases) at the vertices of a triangular grid, the spacing and orientation of which are typically shared with neig...

متن کامل

Neural Odometry: The Discrete Charm of the Entorhinal Cortex

A recent study finds that the grid reference system in entorhinal cortex, used for computing distances during self-localization, has a discretized and modular organization. This has implications both for how the system develops and also for how it functions.

متن کامل

Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.

A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data abo...

متن کامل

Topography of Head Direction Cells in Medial Entorhinal Cortex

BACKGROUND Neural circuits in the medial entorhinal cortex (MEC) support translation of the external environment to an internal map of space, with grid and head direction neurons providing metrics for distance and orientation. RESULTS We show here that head direction cells in MEC are organized topographically. Head direction tuning varies widely across the entire dorsoventral MEC axis, but in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014