Rapid Sampling of Molecular Motions with Prior Information Constraints
نویسندگان
چکیده
Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT). Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion.
منابع مشابه
Prediction of protein flexibility from geometrical constraints
quency motions, the so called "essential" degrees of freedom [1, 2], which typically appear in timescales of nanoseconds to microseconds and play important roles in signalling, activation and enzyme function. Despite the rapid growth of computer power these timescales are not accessible with current molecular dynamic simulations systems. The CONCOORD system attempts to alleviate this sampling p...
متن کاملAlgorithmic Infrastructure for the Prediction of Structure and Motion in Transmembrane Proteins
Introduction Manuscripts Assigning transmembrane segments to helices in intermediate-resolution M1 structures Quasi-symmetry in the cryo-EM structure of EmrE provides the key to M2 modeling its transmembrane domain Prediction and simulation of motion in pairs of transmembrane α-helices M3 Generation, comparison and merging of pathways between protein M4 conformations: Gating in K-channels Rapid...
متن کاملNullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs
Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins an...
متن کاملHPLC-SPE-NMR: a productivity tool in natural products research
Natural products provide excellent potential leads for drug development because of their chemical diversity and biological functionality. However, the productivity of discovery of new, pharmacologically active natural products has traditionally been low due to inherent difficulties and costs associated with extract dereplication, i.e., isolation, purification and structure elucidation of indivi...
متن کاملHPLC-SPE-NMR: a productivity tool in natural products research
Natural products provide excellent potential leads for drug development because of their chemical diversity and biological functionality. However, the productivity of discovery of new, pharmacologically active natural products has traditionally been low due to inherent difficulties and costs associated with extract dereplication, i.e., isolation, purification and structure elucidation of indivi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Computational Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2009