Width of convex bodies in spaces of constant curvature

نویسنده

  • E. Teufel
چکیده

We consider the measure of points, the measure of lines and the measure of planes intersecting a given convex body K in a space form. We obtain some integral formulas involving the width of K and the curvature of its boundary ∂K . Also we study the special case of constant width. Moreover we obtain a generalisation of the Heintze–Karcher inequality to space forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nakajima’s Problem: Convex Bodies of Constant Width and Constant Brightness

For a convex body K ⊂ Rn, the kth projection function of K assigns to any k-dimensional linear subspace of Rn the k-volume of the orthogonal projection of K to that subspace. Let K and K0 be convex bodies in Rn, and let K0 be centrally symmetric and satisfy a weak regularity and curvature condition (which includes all K0 with ∂K0 of class C2 with positive radii of curvature). Assume that K and ...

متن کامل

Typical curvature behaviour of bodies of constant width

It is known that an n-dimensional convex body which is typical in the sense of Baire category, shows a simple, but highly non-intuitive curvature behaviour: at almost all of its boundary points, in the sense of measure, all curvatures are zero, but there is also a dense and uncountable set of boundary points at which all curvatures are infinite. The purpose of this paper is to find a counterpar...

متن کامل

On Boundary Arcs Joining Antipodal Points of a Planar Convex Body

Using notions of Minkowski geometry (i.e., of the geometry of finite dimensional Banach spaces) we find new characterizations of centrally symmetric convex bodies, equiframed curves, bodies of constant width and certain convex bodies with modified constant width property. In particular, we show that straightforward extensions of some properties of bodies of constant Euclidean width are also val...

متن کامل

Convex Bodies of Constant Width and Constant Brightness

Under the extra assumption that the boundary is of class C this was proven by S. Nakajima (= A. Matsumura) in 1926 Theorem 1 solves this problem. For convex bodies with C boundaries and positive curvature Nakajima’s result was generalized by Chakerian [?] in 1967 to “relative geometry” where the width and brightness are measured with with respect to some convex body K0 symmetric about the origi...

متن کامل

Sphere packings in 3-space

In this paper we survey results on packings of congruent spheres in 3-dimensional spaces of constant curvature. The topics discussed are as follows: Hadwiger numbers of convex bodies and kissing numbers of spheres; Touching numbers of convex bodies; Newton numbers of convex bodies; One-sided Hadwiger and kissing numbers; Contact graphs of finite packings and the combinatorial Kepler problem; Is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008