Identification of the Acetylation and Ubiquitin-Modified Proteome during the Progression of Skeletal Muscle Atrophy

نویسندگان

  • Daniel J. Ryder
  • Sarah M. Judge
  • Adam W. Beharry
  • Charles L. Farnsworth
  • Jeffrey C. Silva
  • Andrew R. Judge
  • Ashok Kumar
چکیده

Skeletal muscle atrophy is a consequence of several physiological and pathophysiological conditions including muscle disuse, aging and diseases such as cancer and heart failure. In each of these conditions, the predominant mechanism contributing to the loss of skeletal muscle mass is increased protein turnover. Two important mechanisms which regulate protein stability and degradation are lysine acetylation and ubiquitination, respectively. However our understanding of the skeletal muscle proteins regulated through acetylation and ubiquitination during muscle atrophy is limited. Therefore, the purpose of the current study was to conduct an unbiased assessment of the acetylation and ubiquitin-modified proteome in skeletal muscle during a physiological condition of muscle atrophy. To induce progressive, physiologically relevant, muscle atrophy, rats were cast immobilized for 0, 2, 4 or 6 days and muscles harvested. Acetylated and ubiquitinated peptides were identified via a peptide IP proteomic approach using an anti-acetyl lysine antibody or a ubiquitin remnant motif antibody followed by mass spectrometry. In control skeletal muscle we identified and mapped the acetylation of 1,326 lysine residues to 425 different proteins and the ubiquitination of 4,948 lysine residues to 1,131 different proteins. Of these proteins 43, 47 and 50 proteins were differentially acetylated and 183, 227 and 172 were differentially ubiquitinated following 2, 4 and 6 days of disuse, respectively. Bioinformatics analysis identified contractile proteins as being enriched among proteins decreased in acetylation and increased in ubiquitination, whereas histone proteins were enriched among proteins increased in acetylation and decreased in ubiquitination. These findings provide the first proteome-wide identification of skeletal muscle proteins exhibiting changes in lysine acetylation and ubiquitination during any atrophy condition, and provide a basis for future mechanistic studies into how the acetylation and ubiquitination status of these identified proteins regulates the muscle atrophy phenotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and optimization of mice skeletal muscle satellite cells using preplating method and culture media substitution

Introduction: Satellite cells are known as the main regenerative cell type in skeletal muscles. Our study established a modified digestion and preplating method for the isolation of slow or weak adherent cells for the enrichment of satellite cells. Low-survival rate of these primary stem cells prompted us to address whether cell culture medium substitution might change cell viability status. M...

متن کامل

Injury to skeletal muscle of mice following acute and sub-acute pregabalin exposure

Objective(s): Pregabalin (PGB) is a new antiepileptic drug that has received FDA approval for patient who suffers from central neuropathic pain, partial seizures, generalized anxiety disorder, fibromyalgia and sleep disorders. This study was undertaken to evaluate the possible adverse effects of PGB on the muscular system of mice. Materials and Methods: To evaluate the effect of PGB on skeletal...

متن کامل

The Effect of Aerobic Training and Tribulus Terrestris Extract on Muscle Atrophy Indices and Oxidant-Pro-Oxidant Balance in Extensor Digitorum Longus Muscles of Type 2 Diabetic Desert Rats

Background & Aims: Performing normal daily activities requires sufficient muscle size and strength, and atrophy has a negative effect on the overall quality of life; So that the decrease in skeletal muscle mass leads to a decrease in human performance, long-term health and low quality of life. Diabetes is associated with the development of secondary complications in various organs, especially s...

متن کامل

Merg1a K+ channel induces skeletal muscle atrophy by activating the ubiquitin proteasome pathway.

Skeletal muscle atrophy results from an imbalance in protein degradation and protein synthesis and occurs in response to injury, various disease states, disuse, and normal aging. Current treatments for this debilitating condition are inadequate. More information about mechanisms involved in the onset and progression of muscle atrophy is necessary for development of more effective therapies. Her...

متن کامل

تأثیر سه ماه تمرین هوازی بر مسیر پیام رسانی Wnt عضله‌ اسکلتی موش‌های صحرایی نر

Background: Atrophy in skeletal muscle plays an important role in disease-related tissue dysfunction such as sarcopenia. The Wnt-signaling pathway has been shown to be critical for skeletal muscle development. Current evidence suggests that exercise trainings may alter hypertrophy-related signaling in skeletal muscle. Therefore, the purpose of this study was investigating the effect of three mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015