The proposed functions of membrane curvatures mediated by the BAR domain superfamily proteins.

نویسنده

  • Shiro Suetsugu
چکیده

The plasma membrane, the outermost surface of eukaryotic cells, contains various substructures, such as protrusions or invaginations, which are associated with diverse functions, including endocytosis and cell migration. These structures of the plasma membrane can be considered as tubules or inverted tubules (protrusions) of the membrane. There are six modes of membrane curvature at the plasma membrane, which are classified by the positive or negative curvature and the location of the curvature (tip, neck or shaft of the tubules). The BAR domain superfamily proteins have structurally determined positive and negative curvatures of membrane contact at their BAR, F-BAR and I-BAR domains, which generate and maintain such curved membranes by binding to the membrane. Importantly, the SH3 domains of the BAR domain superfamily proteins bind to the actin regulatory WASP/WAVE proteins, and the BAR/F-BAR/I-BAR domain-SH3 unit could orient the actin filaments towards the membrane for each subcellular structure. These membrane tubulations are also considered to function in membrane fusion and fission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Let's go bananas: revisiting the endocytic BAR code.

Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-f...

متن کامل

Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses.

A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold th...

متن کامل

The BAR Domain Superfamily: Membrane-Molding Macromolecules

Membrane-shaping proteins of the BAR domain superfamily are determinants of organelle biogenesis, membrane trafficking, cell division, and cell migration. An upsurge of research now reveals new principles of BAR domain-mediated membrane remodeling, enhancing our understanding of membrane curvature-mediated information processing.

متن کامل

A BAR domain-mediated autoinhibitory mechanism for RhoGAPs of the GRAF family.

The BAR (Bin/amphiphysin/Rvs) domain defines an emerging superfamily of proteins implicated in fundamental biological processes by sensing and inducing membrane curvature. We identified a novel autoregulatory function for the BAR domain of two related GAPs' (GTPase-activating proteins) of the GRAF (GTPase regulator associated with focal adhesion kinase) subfamily. We demonstrate that the N-term...

متن کامل

Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature.

A spectrum of membrane curvatures exists within cells, and proteins have evolved different modules to detect, create, and maintain these curvatures. Here we present the crystal structure of one such module found within human FCHo2. This F-BAR (extended FCH) module consists of two F-BAR domains, forming an intrinsically curved all-helical antiparallel dimer with a Kd of 2.5 microM. The module bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biochemistry

دوره 148 1  شماره 

صفحات  -

تاریخ انتشار 2010