ar X iv : q ua nt - p h / 06 05 21 8 v 2 4 J an 2 00 7 Quantum Loop Programs ∗
نویسنده
چکیده
Loop is a powerful program construct in classical computation, but its power is still not exploited fully in quantum computation. The exploitation of such power definitely requires a deep understanding of the mechanism of quantum loop programs. In this paper, we introduce a general scheme of quantum loops and describe its computational process. The notions of termination and almost termination are proposed for quantum loops, and the function computed by a quantum loop is defined. To show their expressive power, quantum loops are applied in describing quantum walks. Necessary and sufficient conditions for termination and almost termination of a general quantum loop on any mixed input state are presented. A quantum loop is said to be (almost) terminating if it (almost) terminates on any input state. We show that a quantum loop is almost terminating if and only if it is uniformly almost terminating. It is observed that a small disturbance either on the unitary transformation in the loop body or on the measurement in the loop guard can make any quantum loop (almost) terminating. Moreover, a representation of the function computed by a quantum loop is given in terms of finite summations of matrices. To illustrate the notions and results obtained in this paper, two simplest classes of quantum loop programs, one qubit quantum loops, and two qubit quantum loops defined by controlled gates, are carefully examined.
منابع مشابه
ar X iv : q ua nt - p h / 05 08 06 7 v 1 8 A ug 2 00 5 NEW SCHEME OF QUANTUM TELEPORTATION
A new scheme for quantum teleportation is presented, in which the complete teleportation can be occurred even when an entangled state between Alice and Bob is not maximal.
متن کاملar X iv : q ua nt - p h / 06 05 21 8 v 1 2 5 M ay 2 00 6 Quantum Loop Programs ∗
Loop is a powerful program construct in classical computation, but its power is still not exploited fully in quantum computation. The exploitation of such power definitely requires a deep understanding of the mechanism of quantum loop programs. In this paper, we introduce a general scheme of quantum loops. The computational process of a quantum loop is then described. Moreover, the notions of t...
متن کاملar X iv : q ua nt - p h / 06 11 18 7 v 1 1 7 N ov 2 00 6 Philosophical Aspects of Quantum Information Theory
2 First steps with quantum information 3 2.1 Bits and qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 The no-cloning theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Quantum cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 Key Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Entanglement-as...
متن کاملar X iv : q ua nt - p h / 04 11 17 2 v 1 2 3 N ov 2 00 4 Information and Entropy in Quantum Theory
متن کامل
ar X iv : q ua nt - p h / 05 06 26 5 v 4 8 M ay 2 00 7 Quantum Complexity of Testing Group Commutativity ∗
We consider the problem of testing the commutativity of a black-box group specified by its k generators. The complexity (in terms of k) of this problem was first considered by Pak, who gave a randomized algorithm involving O(k) group operations. We construct a quite optimal quantum algorithm for this problem whose complexity is in Õ(k). The algorithm uses and highlights the power of the quantiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007