The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4.

نویسندگان

  • E Larschan
  • F Winston
چکیده

Previous studies demonstrated that the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex facilitates the binding of TATA-binding protein (TBP) during transcriptional activation of the GAL1 gene of Saccharomyces cerevisiae. TBP binding was shown to require the SAGA components Spt3 and Spt20/Ada5, but not the SAGA component Gcn5. We have now examined whether SAGA is directly required as a coactivator in vivo by using chromatin immunoprecipitation analysis. Our results demonstrate that SAGA is physically recruited in vivo to the upstream activation sequence (UAS) regions of the galactose-inducible GAL genes. This recruitment is dependent on both induction by galactose and the Gal4 activation domain. Furthermore, we demonstrate that another well-characterized activator, Gal4-VP16, also recruits SAGA in vivo. Finally, we provide evidence that a specific interaction between Spt3 and TBP in vivo is important for Gal4 transcriptional activation at a step after SAGA recruitment. These results, taken together with previous studies, demonstrate a dependent pathway for the recruitment of TBP to GAL gene promoters consisting of the recruitment of SAGA by Gal4 and the subsequent recruitment of TBP by SAGA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription.

The Saccharomyces cerevisiae SAGA (Spt-Ada-Gcn5-acetyltransferase) complex functions as a coactivator during Gal4-activated transcription. A functional interaction between the SAGA component Spt3 and TATA-binding protein (TBP) is important for TBP binding at Gal4-activated promoters. To better understand the role of SAGA and other factors in Gal4-activated transcription, we selected for suppres...

متن کامل

A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo.

Transcriptional activators interact with multisubunit coactivators that modify chromatin structure or recruit the general transcriptional machinery to their target genes. Budding yeast cells respond to amino acid starvation by inducing an activator of amino acid biosynthetic genes, Gcn4p. We conducted a comprehensive analysis of viable mutants affecting known coactivator subunits from the Sacch...

متن کامل

Transcriptional Coactivator CBP Facilitates Transcription Initiation and Reinitiation of HTLV-I and Cyclin D2 Promoter

HTLV-I is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Taxi, the major activator of this virus, is a 40- kDa (353 amino acid) phosphoprotein, predominantly localized in the nucleus of the host cell, which functions to trans-activate both viral and cellular promoters. Recently it has been shown that HTLV-I a...

متن کامل

Caught in the act: covalent cross-linking captures activator-coactivator interactions in vivo.

Currently there are few methods suitable for the discovery and characterization of transient, moderate affinity protein-protein interactions in their native environment, despite their prominent role in a host of cellular functions including protein folding, signal transduction, and transcriptional activation. Here we demonstrate that a genetically encoded photoactivatable amino acid, p-benzoyl-...

متن کامل

The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo.

The Saccharomyces cerevisiae SWI-SNF complex is a 2-MDa protein assembly that is required for the function of many transcriptional activators. Here we describe experiments on the role of the SWI-SNF complex in activation of transcription by the yeast activator GAL4. We find that while SWI-SNF activity is not required for the GAL4 activator to bind to and activate transcription from nucleosome-f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 15 15  شماره 

صفحات  -

تاریخ انتشار 2001