Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.

نویسندگان

  • D Soto-Aquino
  • D Rosso
  • C Rinaldi
چکیده

Ferrofluids are colloidal suspensions of magnetic nanoparticles that exhibit normal liquid behavior in the absence of magnetic fields but respond to imposed magnetic fields by changing their viscosity without loss of fluidity. The response of ferrofluids to constant shear and magnetic fields has received a lot of attention, but the response of ferrofluids to oscillatory shear remains largely unexplored. In the present work we used rotational Brownian dynamics to study the dynamic properties of ferrofluids with thermally blocked nanoparticles under oscillatory shear and constant magnetic fields. Comparisons between simulations and modeling using the ferrohydrodynamics equations were also made. Simulation results show that, for small rotational Péclet number, the in-phase and out-of-phase components of the complex viscosity depend on the magnitude of the magnetic field and frequency of the shear, following a Maxwell-like model with field-dependent viscosity and characteristic time equal to the field-dependent transverse magnetic relaxation time of the nanoparticles. Comparison between simulations and the numerical solution of the ferrohydrodynamic equations shows that the oscillatory rotational magnetoviscosity for an oscillating shear field obtained using the kinetic magnetization relaxation equation quantitatively agrees with simulations for a wide range of Péclet number and Langevin parameter but has quantitative deviations from the simulations at high values of the Langevin parameter. These predictions indicate an apparent elastic character to the rheology of these suspensions, even though we are considering the infinitely dilute limit in which there are negligible particle-particle interactions and, as such, chains do not form. Additionally, an asymptotic analytical solution of the ferrohydrodynamics equations, valid for Pe<<2, was used to demonstrate that the Cox-Merz rule applies for dilute ferrofluids under conditions of small shear rates. At higher shear rates the Cox-Merz rule ceases to apply.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex oscillatory yielding of model hard-sphere glasses.

The yielding behavior of hard sphere glasses under large-amplitude oscillatory shear has been studied by probing the interplay of Brownian motion and shear-induced diffusion at varying oscillation frequencies. Stress, structure and dynamics are followed by experimental rheology and Browian dynamics simulations. Brownian-motion-assisted cage escape dominates at low frequencies while escape throu...

متن کامل

Structural change and dynamics of colloidal gels under oscillatory shear flow.

The dynamics and rheological behavior of colloidal gels under oscillatory shear flow have been studied by using the Brownian dynamics simulations. The dynamics is studied under the oscillatory shear of small, medium, and large amplitudes. In the small amplitude oscillatory shear (SAOS) regime, the colloidal gel retains a rigid-chain network structure. The colloidal gel oscillates with small str...

متن کامل

Predictions for the northern coast of the shear rheology map: XXLAOS

A new paradigm of rheological characterization, oscillatory simple shear with infinite forcing amplitudes, is introduced by Khair (J. Fluid Mech., vol. 791, 2016, R5). This pushes the technique of large-amplitude oscillatory shear (LAOS) to have two extremely large amplitudes (both strain-rate and strain), which we might call XXLAOS. Model-specific analytical predictions are derived for a suspe...

متن کامل

MODELING OF ASPHALTENE DEPOSITION IN PIPELINES

This paper is concerned with asphaltene deposition in fluid flowing through pipelines. Brownian diffusion and drag, gravitational, thermophoresis, buoyancy, and shear removal are considered as possible mechanisms in the asphaltene deposition process. The thermo-physical properties of the fluid were obtained from Iranian oil fields. A model was used in the pipeline deposition modeling to predict...

متن کامل

Structure and dynamics of dilute polymer solutions under shear flow via nonequilibrium molecular dynamics

We present and discuss data obtained by an extensive nonequilibrium molecular dynamics computer simulation study of polymer solutions under shear, where the chain consists of N beads connected by a finitely extendable nonlinear elastic (FENE) spring force and the solvent is explicitly taken into account. Various scaling laws are extracted from the data which allow one to predict the qualitative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 84 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011