Load Forecasting Using Fixed-Size Least Squares Support Vector Machines

نویسندگان

  • Marcelo Espinoza
  • Johan A. K. Suykens
  • Bart De Moor
چکیده

Based on the Nyström approximation and the primal-dual formulation of Least Squares Support Vector Machines (LS-SVM), it becomes possible to apply a nonlinear model to a large scale regression problem. This is done by using a sparse approximation of the nonlinear mapping induced by the kernel matrix, with an active selection of support vectors based on quadratic Renyi entropy criteria. The methodology is applied to the case of load forecasting as an example of a real-life large scale problem in industry, for the case of 24-hours ahead predictions. The results are reported for different number of initial support vectors, which cover between 1% and 4% of the entire sample, with satisfactory results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-term Electric Load Forecasting Using Least Square Support Vector Machines

This paper presents a model for short-term load forecasting using least square support vector machines. Available data are analyzed and appropriate features are selected for the model. Last 24 hours load demands are used for features in combination with day in week and hour in day. It is shown that temperature is not always a very good feature for the model. Appropriate data set is used for the...

متن کامل

A Hybrid Model for Short-Term Load Forecasting Based on Non- Parametric Error Correction

In this paper, we presented the performance of forecasting model and error correction will affect the accuracy of short-term load forecasting. Least squares support vector machines (LS-SVM) based on improved particle swarm optimization is selected as load forecasting model. Forecasting accuracy and generalization performance of LS-SVM depend on selection of its parameters greatly. Adaptive part...

متن کامل

A Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Grey Relational Analysis

As an important part of power system planning and the basis of economic operation of power systems, the main work of power load forecasting is to predict the time distribution and spatial distribution of future power loads. The accuracy of load forecasting will directly influence the reliability of the power system. In this paper, a novel short-term Empirical Mode Decomposition-Grey Relational ...

متن کامل

Short-term Load Forecasting with LS-SVM Based on Improved Ant Colony Algorithm Optimization

Research of short-term load forecasting has important practical application value in the field of power network dispatching. The regession models of least squares support vector machines (LS-SVM) have been applied to load forecasting field widely, and the regression accuracy and generalization performance of the LS-SVM models depend on a proper selection of its parameters. In this paper, a new ...

متن کامل

Short - term thermal and electric load forecasting in buildings

Increasing environmental awareness and energy costs encourage the increase of the contribution of renewable energy sources (RES) to the energy supply of buildings. However, the integration of RES and energy storage systems introduces significant challenges for the energy management system (EMS) of complex building energy systems. An energy management strategy based on fixed control rules may fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005