Processing of the Drosophila Hedgehog Signaling Effector Ci-155 to the Repressor Ci-75 Is Mediated by Direct Binding to the SCF Component Slimb

نویسندگان

  • Margery G. Smelkinson
  • Daniel Kalderon
چکیده

Signaling by extracellular Hedgehog (Hh) molecules is crucial for the correct allocation of cell fates and patterns of cell proliferation in humans and other organisms . Responses to Hh are universally mediated by regulating the activity and the proteolysis of the Gli family of transcriptional activators such that they induce target genes only in the presence of Hh . In the absence of Hh, the sole Drosophila Gli homolog, Cubitus interruptus (Ci), undergoes partial proteolysis to Ci-75, which represses key Hh target genes . This processing requires phosphorylation of full-length Ci (Ci-155) by protein kinase A (PKA), casein kinase 1 (CK1), and glycogen synthase kinase 3 (GSK3), as well as the activity of Slimb . Slimb is homologous to vertebrate beta-TRCP1, which binds as part of an SCF (Skp1/Cullin1/F-box) complex to a defined phosphopeptide motif to target proteins for ubiquitination and subsequent proteolysis . Here, we show that phosphorylation of Ci at the specific PKA, GSK-3, and CK1 sites required in vivo for partial proteolysis stimulates binding to Slimb in vitro. Furthermore, a consensus Slimb/beta-TRCP1 binding site from another protein can substitute for phosphorylated residues of Ci-155 to direct conversion to Ci-75 in vivo. From this, we conclude that Slimb binds directly to phosphorylated Ci-155 to initiate processing to Ci-75. We also explore the phosphorylated motifs in Ci that are recognized by Slimb and provide some evidence that silencing of Ci-155 by phosphorylation may involve more than binding to Slimb.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Ci-SCFSlimb binding, Ci proteolysis, and hedgehog pathway activity by Ci phosphorylation.

Hedgehog (Hh) proteins signal by inhibiting the proteolytic processing of Ci/Gli family transcription factors and by increasing Ci/Gli-specific activity. When Hh is absent, phosphorylation of Ci/Gli triggers binding to SCF ubiquitin ligase complexes and consequent proteolysis. Here we show that multiple successively phosphorylated CK1 sites on Ci create an atypical extended binding site for the...

متن کامل

Drosophila homeodomain-interacting protein kinase inhibits the Skp1-Cul1-F-box E3 ligase complex to dually promote Wingless and Hedgehog signaling.

Drosophila Homeodomain-interacting protein kinase (Hipk) has been shown to regulate in vivo, the stability of Armadillo, the transcriptional effector of Wingless signaling. The Wingless pathway culminates in the stabilization of Armadillo that, in the absence of signaling, is sequentially phosphorylated, polyubiquitinated and degraded. Loss-of-function clones for hipk result in reduced stabiliz...

متن کامل

Proteolysis of the Hedgehog Signaling Effector Cubitus interruptus Requires Phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1

The secreted signaling molecule Hedgehog regulates gene expression in target cells in part by preventing proteolysis of the full-length Cubitus interruptus (Ci-155) transcriptional activator to the Ci-75 repressor form. Ci-155 proteolysis depends on phosphorylation at three sites by Protein Kinase A (PKA). We show that these phosphoserines prime further phosphorylation at adjacent Glycogen Synt...

متن کامل

Genetic evidence for a protein kinase A/cubitus interruptus complex that facilitates processing of cubitus interruptus in Drosophila.

Hedgehog (Hh) activates a signal transduction pathway regulating Cubitus interruptus (Ci). In the absence of Hh, full-length Ci (Ci-155) is bound in a complex that includes Costal2 (Cos2) and Fused (Fu). Ci-155 is phosphorylated by protein kinase A (PKA), inducing proteolysis to Ci-75, a transcriptional repressor. Hh signaling blocks proteolysis and produces an activated Ci-155 transcriptional ...

متن کامل

Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development.

The ubiquitin-like protein, Nedd8, covalently modifies members of the Cullin family. Cullins are the major components of a series of ubiquitin ligases that control the degradation of a broad range of proteins. We found that Nedd8 modifies Cul1 in Drosophila. In Drosophila Nedd8 and Cul1 mutants, protein levels of the signal transduction effectors, Cubitus interruptus (Ci) and Armadillo (Arm), a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006