Examples of Undecidable Problems for 2-Generator Matrix Semigroups
نویسندگان
چکیده
منابع مشابه
On the Computational Complexity of Matrix Semigroup Problems
Most computational problems for matrix semigroups and groups are inherently difficult to solve and even undecidable starting from dimension three. The questions about the decidability and complexity of problems for two-dimensional matrix semigroups remain open and are directly linked with other challenging problems in the field. In this paper we study the computational complexity of the problem...
متن کاملOn the Undecidability of the Identity Correspondence Problem and its Applications for Word and Matrix Semigroups
In this paper we study several closely related fundamental problems for words and matrices. First, we introduce the Identity Correspondence Problem (ICP): whether a finite set of pairs of words (over a group alphabet) can generate an identity pair by a sequence of concatenations. We prove that ICP is undecidable by a reduction of Post’s Correspondence Problem via several new encoding techniques...
متن کاملReachability Problems in Quaternion Matrix and Rotation Semigroups
We examine computational problems on quaternion matrix and rotation semigroups. It is shown that in the ultimate case of quaternion matrices, in which multiplication is still associative, most of the decision problems for matrix semigroups are undecidable in dimension two. The geometric interpretation of matrix problems over quaternions is presented in terms of rotation problems for the 2 and 3...
متن کاملScalar Ambiguity and Freeness in Matrix Semigroups over Bounded Languages
There has been much research into freeness properties of finitely generated matrix semigroups under various constraints, mainly related to the dimensions of the generator matrices and the semiring over which the matrices are defined. A recent paper has also investigated freeness properties of matrices within a bounded language of matrices, which are of the form M1M2 · · ·Mk ⊆ Fn×n for some semi...
متن کاملMortality in Matrix Semigroups
We present a new shorter and simplified proof for the undecidability of the mortality problem in matrix semigroups, originally proved by Paterson in 1970. We use the clever coding technique introduced by Paterson to achieve also a new result, the undecidability of the vanishing (left) upper corner. Since our proof for the undecidability of the mortality problem uses only 8 matrices, a new bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 204 شماره
صفحات -
تاریخ انتشار 1998