The ligand specificity of yeast Rad53 FHA domains at the +3 position is determined by nonconserved residues.
نویسندگان
چکیده
On the basis of the results from our laboratory and others, we recently suggested that the ligand specificity of forkhead-associated (FHA) domains is controlled by variations in three major factors: (i) residues interacting with pThr, (ii) residues recognizing the +1 to +3 residues from pThr, and (iii) an extended binding surface. While the first factor has been well established by several solution and crystal structures of FHA-phosphopeptide complexes, the structural bases of the second and third factors are not well understood and are likely to vary greatly between different FHA domains. In this work, we proposed and tested the hypothesis that nonconserved residues G133 and G135 of FHA1 and I681 and D683 of FHA2, located outside of the core FHA region of yeast Rad53 FHA domains, contribute to the specific recognition of the +3 position of different phosphopeptides. By rational mutagenesis of these residues, the specificity of FHA1 has been changed from predominantly pTXXD to be equally acceptable for pTXXD, pTXXL, and pYXL, which are similar to the specificities of the FHA2 domain of Rad53. Conversely, the +3 position specificity of FHA2 has been engineered to be more like FHA1 with the I681A mutation. These results were based on library screening as well as binding analyses of specific phosphopeptides. Furthermore, results of structural analyses by NMR indicate that some of these residues are also important for the structural integrity of the loops.
منابع مشابه
Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53.
The forkhead-associated (FHA) domain is a 55-75 amino acid residue module found in >20 proteins from yeast to human. It has been suggested to participate in signal transduction pathways, perhaps via protein-protein interactions involving recognition of phosphopeptides. Neither the structure nor the ligand of FHA is known. Yeast Rad53, a checkpoint protein involved in DNA damage response, contai...
متن کاملDiverse but overlapping functions of the two forkhead-associated (FHA) domains in Rad53 checkpoint kinase activation.
Forkhead-associated (FHA) domains are phosphothreonine-binding modules prevalent in proteins with important cell cycle and DNA damage response functions. The yeast checkpoint kinase Rad53 is unique in containing two FHA domains. We have generated novel recessive rad53 alleles with abolished FHA domain functions resulting from Ala substitution of the critical phosphothreonine-binding residues Ar...
متن کاملSolution structure of the yeast Rad53 FHA2 complexed with a phosphothreonine peptide pTXXL: comparison with the structures of FHA2-pYXL and FHA1-pTXXD complexes.
It was proposed previously that the FHA2 domain of the yeast protein kinase Rad53 has dual specificity toward pY and pT peptides. The consensus sequences of pY peptides for binding to FHA2, as well as the solution structures of free FHA2 and FHA2 complex with a pY peptide derived from Rad9, have been obtained previously. We now report the use of a pT library to screen for binding of pT peptides...
متن کاملII. Structure and specificity of the interaction between the FHA2 domain of Rad53 and phosphotyrosyl peptides.
The forkhead-associated (FHA) domain is a protein module found in many proteins involved in cell signaling in response to DNA damage. It has been suggested to bind to pThr sites of its target protein. Recently we have determined the first structure of an FHA domain, FHA2 from the yeast protein Rad53, and demonstrated that FHA2 binds to a pTyr-containing peptide (826)EDI(pY)YLD(832) from Rad9, w...
متن کاملCrystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex.
The precursor mRNA retention and splicing (RES) complex mediates nuclear retention and enhances splicing of precursor mRNAs. The RES complex from yeast comprises three proteins, Snu17p, Bud13p and Pml1p. Snu17p acts as a central platform that concomitantly binds the Bud13p and Pml1p subunits via short peptide epitopes. As a step to decipher the molecular architecture of the RES complex, we have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 43 13 شماره
صفحات -
تاریخ انتشار 2004