Instability and Wave Propagation in Structured 3 D Composites

نویسندگان

  • NARGES KAYNIA
  • NICHOLAS X. FANG
  • MARY C. BOYCE
  • Narges Kaynia
چکیده

Submitted for the MAR14 Meeting of The American Physical Society Instability and Wave Propagation in Structured 3D Composites NARGES KAYNIA, NICHOLAS X. FANG, MARY C. BOYCE, Massachusetts Inst of Tech MIT — Many structured composites found in nature possess undulating and wrinkled interfacial layers that regulate mechanical, chemical, acoustic, adhesive, thermal, electrical and optical functions of the material. This research focused on the complex instability and wrinkling pattern arising in 3D structured composites and the effect of the buckling pattern on the overall structural response. The 3D structured composites consisted of stiffer plates supported by soft matrix on both sides. Compression beyond the critical strain led to complex buckling patterns in the initially straight plates. The motivation of our work is to elaborate the formation of a system of prescribed periodic scatterers (metamaterials) due to buckling, and their effect to interfere wave propagation through the metamaterial structures. Such metamaterials made from elastomers enable large reversible deformation and, as a result, significant changes of the wave propagation properties. We developed analytical and finite element models to capture various aspects of the instability mechanism. Mechanical experiments were designed to further explore the modeling results. The ability to actively alter the 3D composite structure can enable on-demand tunability of many different functions, such as active control of wave propagation to create band-gaps and waveguides. Narges Kaynia Massachusetts Inst of Tech MIT Date submitted: 15 Nov 2013 Electronic form version 1.4

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instability induced control of wave propagation in structured composites

The microstructure of a composite material has an essential infl uence on its effective properties, and it can be used to regulate mechanical, chemical, acoustic, adhesive, thermal, electrical, and optical functions of the material. This research focused on purposely deploying the mechanics of instabilities to achieve sudden pattern transformations in the microstructure of a composite, and stud...

متن کامل

Tunable phononic crystals via instability-induced interfacial wrinkling

We present a method to control wave propagation in highly deformable layered media by utilizing elastic insta-bility-induced wrinkling of interfacial layers. The onset of a wrinkling instability in initially straight interfacial layersoccurs when a critical compressive strain or stress is achieved [1]. Further compression beyond the critical strainleads to an increase in the wri...

متن کامل

Transforming wave propagation in layered media via instability-induced interfacial wrinkling.

The ability to control wave propagation in highly deformable layered media with elastic instability-induced wrinkling of interfacial layers is presented. The onset of a wrinkling instability in initially straight interfacial layers occurs when a critical compressive strain is achieved. Further compression beyond the critical strain leads to an increase in the wrinkle amplitude of the interfacia...

متن کامل

شبیه‌سازی ذره‌ای ناپایداری رامان پیش رو در پلاسمای کم چگال

 Propagation of Electromagnetic wave in a plasma in the equilibrium state can cause instability. Investigating the situations in which this kind of instability occurs and grows is an important issue. In this paper, Raman instability in plasma is analyzed by particle simulation method. In terms of physical investigation, plasma is a very complicated environment and experimentally too expensive. ...

متن کامل

Numerical Solution of Seismic Wave Propagation Equation in Uniform Soil on Bed Rock with Weighted Residual Method

To evaluate the earth seismic response due to earthquake effects, ground response analyses are used to predict ground surface motions for development of design response spectra, to compute dynamic stresses and strains for evaluation of liquefaction hazards, and to determine the earthquake induced forces that can lead to instability of earth and earth-retaining structures. Most of the analytical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014