Field, coil, and echo-time influence on sensitivity and reproducibility of brain proton MR spectroscopy.

نویسندگان

  • M Inglese
  • M Spindler
  • J S Babb
  • P Sunenshine
  • M Law
  • O Gonen
چکیده

BACKGROUND AND PURPOSE Clinical MR imaging scanners now offer many choices of hardware configurations that were not available in the first 25 years of their existence. Our goal was to assess the influence of coil technology, magnetic field strength, and echo time (TE) on the sensitivity, reflected by the signal intensity-to-noise-ratio (SNR) and reproducibility of proton MR spectroscopy (1H-MR spectroscopy). MATERIAL AND METHODS The SNR, the intersubject reproducibility, and the intrasubject reproducibility of N-acetylaspartate (NAA), creatine (Cr), and choline (Cho) levels were compared at the common TEs of 30, 144, and 288 ms, by using 1H-MR spectroscopy in 6 volunteers at (1) 3T with a single-element quadrature (SEQ); (2) 1.5T with SEQ; and (3) 1.5T with a 12-channel phased-array (PA) head coil. RESULTS In terms of sensitivity, the best SNR for all metabolites was obtained at the shortest TE (30 ms). It was comparable between the 3 and 1.5T with the PA, but approximately 35% better than the 1.5T with SEQ. This SNR difference declined <25% at TE of 144 ms and to equity among all imagers at TE of 288 ms. Reproducibility, reflected in the coefficient of variation (CV), was best for NAA at TE of 288 ms, 15%-50% better than at TE of 30 ms in either gray (GM) or white matter (WM). The CV for Cr was best, at TE of 288 ms for GM, but its WM results were independent of TE. Metabolite level reproducibility did not depend on coil technology or magnetic field strength. CONCLUSIONS For the same coil type, the SNR of all major metabolites was approximately 35% better at 3T than at 1.5T. This advantage, however, was offset at 1.5T with a PA coil, making it a cost-effective upgrade for existing scanners. Surprisingly and counterintuitively, despite the lowest SNR, the best reproducibility was obtained at the longest TE (288 ms), regardless of field or coil.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Characteristics of MRI Coils in Terms of RF Non-Homogeneity Using Routine Spin Echo Sequences

Introduction: One of the major causes of image non-uniformity in MRI is due to the existence of  non-homogeneity in RF receive and transmit. This can be the most effective source of error in  quantitative  studies  in  MRI  imaging.  Part  of  this  non-homogeneity  demonstrates  the  characteristics of RF coil and part of it is due to the interaction of RF field with the material being  imaged...

متن کامل

Comparison the Accuracy of Fetal Brain Extraction from T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR Image with T2-True Fast Imaging with Steady State Free Precession (TRUFI) MR Image by Level Set Algorithm

Background Access to appropriate images of fetal brain can greatly assist to diagnose of probable abnormalities. The aim of this study was to compare the suitability of T2-True Fast Imaging with Steady State Free Precession (T2-TRUFI), and T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (T2- HASTE( magnetic resonance imaging (MRI) to extract the fetal brain using the level set algorithm...

متن کامل

Feasibility of in-vivo Diffusion Tensor Echo Planar Imaging and Fiber Tracking at 14.1T

Introduction: Diffusion tensor imaging (DTI) has shown remarkable results over the last decade mainly for tumor detection and tracking brain recovery processes by assessing tissue microstructures information. Indeed, proton magnetic resonance spectroscopy has also shown interest in studying brain development [1] by looking at metabolic changes. Therefore, the combination of DTI with MRS gives a...

متن کامل

اندازه گیری غیریکنواختی امواج رادیوئی در ام آر آی

Introduction: Non-uniformity is one of the most important parameters affecting MRI images which can lead to harmful effects in the diagnosis and analysis of qualitative and quantitative methods. The present study introduced a method for measuring RF non-homogeneity in MRI systems. Methods and Materials: To verify the uniformity of B0 and B1 fields, a cylindrical phantom with a diameter of 24 c...

متن کامل

Higher field strength for proton MR spectroscopy.

MR imagers with magnetic fields (B0) greater than 1.5 T are offered by all major manufacturers. Although 4-, 6-, 7-, and even 8-T, whole-body instruments are currently operational, the most common high-B0 systems are the nearly 100 installed with 3-T magnets. The demand for bigger B0 systems has been driven almost exclusively by functional MR imaging (1); however, their proliferation and Food a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2006