Tight-Binding based SiGe Band Structure Calculations and Implication on Transport

نویسندگان

  • Saumitra Mehrotra
  • Abhijeet Paul
  • Gerhard Klimeck
  • Mathieu Luisier
چکیده

This work presents a comprehensive analysis of the SiGe band structure using a TightBinding based approach within the virtual crystal approximation. We analyze the material properties of bulk relaxed SiGe and biaxially compressed strained systems. The simulation approach has been benchmarked against experimental data wherever possible. We further investigate the effect of process induced uniaxial strain in <100> SiGe/Si pMOS devices. It is found that uniaxial strain can further improve the performance of biaxially compressed SiGe/Si based pMOS devices by as much as 10% for high Ge% devices. KeywordsSiGe, biaxial, uniaxial strain, bandstructure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic band structure of a Carbon nanotube superlattice

By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...

متن کامل

Electronic band structure of a Carbon nanotube superlattice

By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...

متن کامل

Atomistic Simulations for SiGe pMOS Devices - Bandstructure to Transport

Introduction: SiGe pMOSFETs show considerable improvements in device performance due to the smaller hole effective mass exhibited by Ge.Further improvement in device performance can be obtained by growing pseudomorphically compressively strained SiGe on Si. Despite a lattice mismatch of ~4% between Si and Ge, researchers have been recently able to fabricate ultrathin body and nanowire pMOSFETs ...

متن کامل

Tight- binding study of electronic band structure of anisotropic honeycomb lattice

 The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...

متن کامل

بررسی افزایش طول بر ترابرد الکترونی نانو روبان گرافینی دسته صندلی در حضور ناخالصی نیتروژن

In this research, we have investigated the effect of increasing length on the electronic transport of an armchair graphene nano-ribbons with nitrogen atom impurity and without impurity. The semi-infinite, one-dimensional molecular systems are connected to two electrodes and the electron-electron interaction is ignored. The system is described by a simple tight binding model. All calculations ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010