Optimization of Spiral MRI Using a Perceptual Difference Model
نویسندگان
چکیده
We systematically evaluated a variety of MR spiral imaging acquisition and reconstruction schemes using a computational perceptual difference model (PDM) that models the ability of humans to perceive a visual difference between a degraded "fast" MRI image with subsampling of k-space and a "gold standard" image mimicking full acquisition. Human subject experiments performed using a modified double-stimulus continuous-quality scale (DSCQS) correlated well with PDM, over a variety of images. In a smaller set of conditions, PDM scores agreed very well with human detectability measurements of image quality. Having validated the technique, PDM was used to systematically evaluate 2016 spiral image conditions (six interleave patterns, seven sampling densities, three density compensation schemes, four reconstruction methods, and four noise levels). Voronoi (VOR) with conventional regridding gave the best reconstructions. At a fixed sampling density, more interleaves gave better results. With noise present more interleaves and samples were desirable. With PDM, conditions were determined where equivalent image quality was obtained with 50% sampling in noise-free conditions. We conclude that PDM scoring provides an objective, useful tool for the assessment of fast MR image quality that can greatly aid the design of MR acquisition and signal processing strategies.
منابع مشابه
Heat transfer enhancement in a spiral plate heat exchanger model using continuous rods
This study presents an innovative and simple way to increase the rate of heat transfer in a spiral plate heat exchanger model. Several circular cross-section rods, as continuous vortex generators, have been inserted within the spiral plate heat exchanger in the cross-stream plane. The vortex generators are located at various azimuth angles of α=30◦, 60◦, 90◦, and 120◦ with non-dimensional diame...
متن کاملAutomatic MRI Acquisition Parameters Optimization Using Perceptual Criteria
INTRODUCTION: The visualization of structures in MRI highly depends on many user defined scan parameters. The selection of them is always done heuristically and requires a vast experience from the operator. Furthermore, sometimes it is not simple to predict the effect on the visibility of the structures of interest when a parameter is modified. We propose a methodology based on an automatic opt...
متن کاملParametric analysis of a broadband Archimedean spiral antenna with cavity
In this article an Archimedean spiral antenna is designed and analyzed that has good operation in broadband application. By analyzing this design, the effects that different parameters have on antenna operation will be studied and ways of optimization will be found. Influences of cavity height and number of turns to obtain good matching and gain in a frequency interval of 4 to 18 GHz will be d...
متن کاملHighly accelerated 3D dynamic contrast enhanced MRI from sparse spiral sampling using integrated partial separability model and JSENSE
Dynamic contrast enhanced MRI requires high spatial resolution for morphological information and high temporal resolution for contrast pharmacokinetics. The current techniques usually have to compromise the spatial information for the required temporal resolution. This paper presents a novel method that effectively integrates sparse sampling, parallel imaging, partial separable (PS) model, and ...
متن کاملObserver variation in the evaluation of lumbar herniated discs and root compression: spiral CT compared with MRI.
Spiral CT is considered the best alternative for MRI in the evaluation of herniated discs. The purpose of this study was to compare radiological evaluation of spiral CT with MRI in patients suspected of herniated discs. 57 patients with lumbosacral radicular syndrome underwent spiral CT and 1.5 T MRI. Two neuroradiologists independently evaluated 171 intervertebral discs for herniation or "bulg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Biomedical Imaging
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006