Quadratic 0-1 programming: Tightening linear or quadratic convex reformulation by use of relaxations

نویسندگان

  • Alain Billionnet
  • Sourour Elloumi
  • Marie-Christine Plateau
چکیده

Many combinatorial optimization problems can be formulated as the minimization of a 0-1 quadratic function subject to linear constraints. In this paper, we are interested in the exact solution of this problem through a two-phase general scheme. The first phase consists in reformulating the initial problem either into a compact mixed integer linear program or into a 0-1 quadratic convex program. The second phase simply consists in submitting the reformulated problem to a standard solver. The efficiency of this scheme strongly depends on the quality of the reformulation obtained in phase 1. We show that a good compact linear reformulation can be obtained by solving a continuous linear relaxation of the initial problem. We also show that a good quadratic convex reformulation can be obtained by solving a semidefinite relaxation. In both cases, the obtained reformulation profits from the quality of the underlying relaxation. Hence, the proposed scheme gets around, in a sense, the difficulty to incorporate these costly relaxations in a branch-and-bound algorithm. . 1 Laboratoire CEDRIC, ENSIIE, 18 allée Jean Rostand, F-91025 Evry ; e-mail: [email protected] 2 Laboratoire CEDRIC, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, F-75141 Paris ; e-mail: [email protected] 3 e-mail: [email protected] c © EDP Sciences 2001 2 Résumé. Le problème de la minimisation d’une fonction quadratique en variables 0-1 sous contraintes linéaires permet de modéliser de nombreux problèmes d’Optimisation Combinatoire. Nous nous intéressons à sa résolution exacte par un schéma général en deux phases. La première phase permet de reformuler le problème de départ soit en un programme linéaire compact en variables mixtes soit en un programme quadratique convexe en variables 0-1. La deuxième phase consiste simplement à soumettre le problème reformulé à un solveur standard. L’efficacité de ce schéma est étroitement liée à la qualité de la reformulation obtenue à la fin de la phase 1. Nous montrons qu’une bonne reformulation linéaire compacte peut être obtenue par la résolution d’une relaxation linéaire. De même, une bonne reformulation quadratique convexe peut être obtenue par une relaxation semi-définie positive. Dans les deux cas, la reformulation obtenue tire profit de la qualité de la relaxation sur laquelle elle se base. Ainsi, le schéma proposé contourne, d’une certaine façon, la difficulté d’intégrer des relaxations, coûteuses en temps de calcul, dans un algorithme de branch-and-bound. Introduction Consider the following linearly-constrained zero-one quadratic program :

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Quadratic Programming for Exact Solution of 0-1 Quadratic Programs

Let (QP ) be a 0-1 quadratic program which consists in minimizing a quadratic function subject to linear constraints. In this paper, we present a general method to solve (QP ) by reformulation of the problem into an equivalent 0-1 program with a convex quadratic objective function, followed by the use of a standard mixed integer quadratic programming solver. Our convexification method, which is...

متن کامل

Combining QCR and CHR for convex quadratic pure 0-1 programming problems with linear constraints

The convex hull relaxation (CHR) method (Albornoz 1998, Ahlatçıoğlu 2007, Ahlatçıoğlu and Guignard 2010) provides lower bounds and feasible solutions on convex 0-1 nonlinear programming problems with linear constraints. In the quadratic case, these bounds may often be improved by a preprocessing step that adds to the quadratic objective function terms that are equal to 0 for all 0-1 feasible so...

متن کامل

Strengthening the SDP Relaxation of AC Power Flows with Convex Envelopes, Bound Tightening, and Lifted Nonlinear Cuts

This paper considers state-of-the-art convex relaxations for the AC power flow equations and introduces valid cuts based on convex envelopes and lifted nonlinear constraints. These valid linear inequalities strengthen existing semidefinite and quadratic programming relaxations and dominate existing cuts proposed in the literature. Combined with model intersection and bound tightening, the new l...

متن کامل

Convex Relaxation Methods for Nonconvex Polynomial Optimization Problems

This paper introduces to constructing problems of convex relaxations for nonconvex polynomial optimization problems. Branch-and-bound algorithms are convex relaxation based. The convex envelopes are of primary importance since they represent the uniformly best convex underestimators for nonconvex polynomials over some region. The reformulationlinearization technique (RLT) generates LP (linear p...

متن کامل

Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations

A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher dimensional space by introducing variables Yij to represent each of the products xixj of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • RAIRO - Operations Research

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2008