Control of neurotransmitter release by an internal gel matrix in synaptic vesicles.
نویسندگان
چکیده
Neurotransmitters are stored in synaptic vesicles, where they have been assumed to be in free solution. Here we report that in Torpedo synaptic vesicles, only 5% of the total acetylcholine (ACh) or ATP content is free, and that the rest is adsorbed to an intravesicular proteoglycan matrix. This matrix, which controls ACh and ATP release by an ion-exchange mechanism, behaves like a smart gel. That is, it releases neurotransmitter and changes its volume when challenged with small ionic concentration change. Immunodetection analysis revealed that the synaptic vesicle proteoglycan SV2 is the core of the intravesicular matrix and is responsible for immobilization and release of ACh and ATP. We suggest that in the early steps of vesicle fusion, this internal matrix regulates the availability of free diffusible ACh and ATP, and thus serves to modulate the quantity of transmitter released.
منابع مشابه
An Exciting Release on TRPM7
Following fusion, synaptic vesicles do not always release all of their neurotransmitter. According to one model, neurotransmitters bind to a charged matrix within secretory vesicles, and release requires entry of counterions. In the current issue of Neuron, Krapivinsky et al. demonstrate that TRPM7 is localized to synaptic vesicles and is required for release of the positively charged neurotran...
متن کاملGlutamate uptake occurs at an early stage of synaptic vesicle recycling
Rapid membrane recycling in nerve terminals is required to maintain rapid synaptic transmission. Following the fusion of synaptic vesicles with synaptic plasma membranes, recycling can occur via clathrin-coated vesicles (CCVs) [1-3]. The fate of these vesicles is uncertain: they could simply uncoat and acquire other proteins from the cytosol to regenerate synaptic vesicles or they may fuse with...
متن کاملFife organizes synaptic vesicles and calcium channels for high-probability neurotransmitter release
The strength of synaptic connections varies significantly and is a key determinant of communication within neural circuits. Mechanistic insight into presynaptic factors that establish and modulate neurotransmitter release properties is crucial to understanding synapse strength, circuit function, and neural plasticity. We previously identified Drosophila Piccolo-RIM-related Fife, which regulates...
متن کاملNeurotransmitter : Release
The nervous system is composed of networks of cells that engage in coordinated circuits to permit neural function. Within these precise neural circuits, communication between individual cells is primarily chemical in nature. Neurotransmitter release via exocytosis of neurotransmitter-filled synaptic vesicles is a fundamental step in this process. Here we overview the biochemical processes that ...
متن کاملCerebellum and reelin under chronic treadmill exercise conditions in male rats
Reelin is an extracellular matrix neuroprotein which plays important roles during development and maturation of cerebellum. In the postnatal cerebellum, Reelin is synthesized by cerebellar granule cells and secreted to extracellular matrix. This secreted protein modulates adult synaptic function, neurotransmitter release and regulates plasticity. Exercise has beneficial effects on central nervo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 6 شماره
صفحات -
تاریخ انتشار 2003