The Laplacian Spectral Radius of a Class of Unicyclic Graphs

نویسنده

  • Haixia Zhang
چکیده

Let C(n, k) be the set of all unicyclic graphs with n vertices and cycle length k. For anyU ∈ C(n, k),U consists of the (unique) cycle (say Ck) of length k and a certain number of trees attached to the vertices of Ck having (in total) n − k edges. If there are at most two trees attached to the vertices of Ck, where k is even, we identify in the class of unicyclic graphs those graphs whose Laplacian spectral radii are minimal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Signless Laplacian Spectral Radius of Unicyclic Graphs with Graph Constraints

In this paper, we study the signless Laplacian spectral radius of unicyclic graphs with prescribed number of pendant vertices or independence number. We also characterize the extremal graphs completely.

متن کامل

On the Signless Laplacian Spectral Radius of Unicyclic Graphs with Fixed Matching Number

We determine the graph with the largest signless Laplacian spectral radius among all unicyclic graphs with fixed matching number.

متن کامل

Some results on the ordering of the Laplacian spectral radii of unicyclic graphs

A unicyclic graph is a graph whose number of edges is equal to the number of vertices. Guo Shu-Guang [S.G. Guo, The largest Laplacian spectral radius of unicyclic graph, Appl. Math. J. Chinese Univ. Ser. A. 16 (2) (2001) 131–135] determined the first four largest Laplacian spectral radii together with the corresponding graphs among all unicyclic graphs on n vertices. In this paper, we extend th...

متن کامل

Ordering of the signless Laplacian spectral radii of unicyclic graphs

For n ≥ 11, we determine all the unicyclic graphs on n vertices whose signless Laplacian spectral radius is at least n− 2. There are exactly sixteen such graphs and they are ordered according to their signless Laplacian spectral radii.

متن کامل

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013