Automatic Kernel Clustering with Multi-Elitist Particle Swarm Optimization Algorithm
نویسندگان
چکیده
This article introduces a scheme for clustering complex and linearly non-separable datasets, without any prior knowledge of the number of naturally occurring groups in the data. The proposed method is based on a modified version of classical Particle Swarm Optimization (PSO) algorithm, known as the Multi-elitist PSO (MEPSO) model. It also employs a kernel-induced similarity measure instead of the conventional sum-of-squares distance. Use of the kernel function makes it possible to cluster data that is linearly non-separable in the original input space into homogeneous groups in a transformed high-dimensional feature space. A new particle representation scheme has been adopted for selecting the optimal number of clusters from several possible choices. The performance of the proposed method has been extensively compared with a few state of the art clustering techniques over a test suit of several artificial and real life datasets. Based on the computer simulations, some empirical guidelines have been provided for selecting the suitable parameters of the PSO algorithm.
منابع مشابه
Automatic kernel clustering with a Multi-Elitist Particle Swarm Optimization Algorithm
This article introduces a scheme for clustering complex and linearly non-separable datasets, without any prior knowledge of the number of naturally occurring groups in the data. The proposed method is based on a modified version of classical Particle Swarm Optimization (PSO) algorithm, known as the Multi-Elitist PSO (MEPSO) model. It also employs a kernel-induced similarity measure instead of t...
متن کاملEMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملMulti-Objective Fault Section Estimation in Distribution Systems Using Elitist NSGA
In this paper, a non-dominated sorting based multi objective EA (MOEA), called Elitist non dominated sorting genetic algorithm (Elitist NSGA) has been presented for solving the fault section estimation problem in automated distribution systems, which alleviates the difficulties associated with conventional techniques of fault section estimation. Due to the presence of various conflicting object...
متن کاملFuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem
This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and fl...
متن کاملClustering techniques and discrete particle swarm optimization algorithm for multi-document summarization
Multi-document summarization is a process of automatic creation of a compressed version of a given collection of documents that provides useful information to users. In this article we propose a generic multi-document summarization method based on sentence clustering. We introduce five clustering methods, which optimize various aspects of intra-cluster similarity, inter-cluster dissimilarity an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007