Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila
نویسندگان
چکیده
Finding food sources is essential for survival. Insects detect nutrients with external taste receptor neurons. Drosophila possesses multiple taste organs that are distributed throughout its body. However, the role of different taste organs in feeding remains poorly understood. By blocking subsets of sweet taste receptor neurons, we show that receptor neurons in the legs are required for immediate sugar choice. Furthermore, we identify two anatomically distinct classes of sweet taste receptor neurons in the leg. The axonal projections of one class terminate in the thoracic ganglia, whereas the other projects directly to the brain. These two classes are functionally distinct: the brain-projecting neurons are involved in feeding initiation, whereas the thoracic ganglia-projecting neurons play a role in sugar-dependent suppression of locomotion. Distinct receptor neurons for the same taste quality may coordinate early appetitive responses, taking advantage of the legs as the first appendages to contact food.
منابع مشابه
Drosophila Sugar Receptors in Sweet Taste Perception, Olfaction, and Internal Nutrient Sensing
Identification of nutritious compounds is dependent on expression of specific taste receptors in appropriate taste-cell types [1]. In contrast to mammals, which rely on a single, broadly tuned heterodimeric sugar receptor [2], the Drosophila genome harbors a small subfamily of eight, closely related gustatory receptor (Gr) genes, Gr5a, Gr61a, and Gr64a-Gr64f, of which three have been proposed t...
متن کاملIdentification of a Drosophila Glucose Receptor Using Ca2+ Imaging of Single Chemosensory Neurons
Evaluation of food compounds by chemosensory cells is essential for animals to make appropriate feeding decisions. In the fruit fly Drosophila melanogaster, structurally diverse chemicals are detected by multimeric receptors composed of members of a large family of Gustatory receptor (Gr) proteins. Putative sugar and bitter receptors are expressed in distinct subsets of Gustatory Receptor Neuro...
متن کاملPharyngeal sense organs drive robust sugar consumption in Drosophila
The fly pharyngeal sense organs lie at the transition between external and internal nutrient-sensing mechanisms. Here we investigate the function of pharyngeal sweet gustatory receptor neurons, demonstrating that they express a subset of the nine previously identified sweet receptors and respond to stimulation with a panel of sweet compounds. We show that pox-neuro (poxn) mutants lacking taste ...
متن کاملTaste Perception and Coding in Drosophila
BACKGROUND Discrimination between edible and contaminated foods is crucial for the survival of animals. In Drosophila, a family of gustatory receptors (GRs) expressed in taste neurons is thought to mediate the recognition of sugars and bitter compounds, thereby controlling feeding behavior. RESULTS We have characterized in detail the expression of eight Gr genes in the labial palps, the fly's...
متن کاملDrosophila Fatty Acid Taste Signals through the PLC Pathway in Sugar-Sensing Neurons
Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016