Parallel Classification with Two-Stage Bagging Classifiers

نویسندگان

  • Verena Christina Horak
  • Tobias Berka
  • Marián Vajtersic
چکیده

Bootstrapped aggregation of classifiers, also referred to as bagging, is a classic meta-classification algorithm. We extend it to a two-stage architecture consisting of an initial voting amongst one-versus-all classifiers or single-class recognizers, and a second stage of one-versus-one classifiers or two-class discriminators used for disambiguation. Since our method constructs an ensemble of elementary classifiers, it lends itself very well to parallelization. We describe a static work∗ These co-authors contributed equally to this work. 662 V. Horak, T. Berka, M. Vajteršic load balancing strategy for embarrassingly parallel classifier construction as well as a parallelization of the classification process with the message passing interface. In our experiments, which are evaluated in terms of classification performance and speed-up, we obtained an up to three-fold increase in precision and significantly increased recall values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran

An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...

متن کامل

A Two-stage Committee Machine of Neural Networks

In solving pattern recognition problems, many ensemble methods have been proposed to replace a single classifier by a classifier committee. These methods can be divided roughly into two categories: serial and parallel approaches. In the serial approach, component classifiers are created by focusing on different parts of the training set in different learning phases. In contrast, without paying ...

متن کامل

Margin distribution based bagging pruning

Bagging is a simple and effective technique for generating an ensemble of classifiers. It is found there are a lot of redundant base classifiers in the original Bagging. We design a pruning approach to bagging for improving its generalization power. The proposed technique introduces the margin distribution based classification loss as the optimization objective and minimizes the loss on trainin...

متن کامل

A Double Pruning Algorithm for Classification Ensembles

This article introduces a double pruning algorithm that can be used to reduce the storage requirements, speed-up the classification process and improve the performance of parallel ensembles. A key element in the design of the algorithm is the estimation of the class label that the ensemble assigns to a given test instance by polling only a fraction of its classifiers. Instead of applying this f...

متن کامل

Parallel computation of kernel density estimates classifiers and their ensembles

Nonparametric supervised classifiers are interesting because they do not require distributional assumptions for the class conditional density, such as normality or equal covariance. However their use is not widespread because it takes a lot of time to compute them due to the intensive use of the available data. On the other hand bundling classifiers to produce a single one, known as an ensemble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computing and Informatics

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2013