Topological triple-vortex lattice stabilized by mixed frustration in expanded honeycomb Kitaev-Heisenberg model
نویسندگان
چکیده
The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two sources: the geometrical frustration arising from the lattice structure as well as the frustration from the Kitaev couplings.
منابع مشابه
مطالعه مدل هایزنبرگ به روش خودسازگار گاؤسی بر روی شبکههای لانه زنبوری و الماسی
The classical J1-J2 Heisenberg model on bipartite lattice exhibits "Neel" order. However if the AF interactions between the next nearest neighbor(nnn) are increased with respect to the nearest neighbor(nn), the frustration effect arises. In such situations, new phases such as ordered phases with coplanar or spiral ordering and disordered phases such as spin liquids can arise. In this paper we ...
متن کاملStrongly frustrated triangular spin lattice emerging from triplet dimer formation in honeycomb Li2IrO3.
Iridium oxides with a honeycomb lattice have been identified as platforms for the much anticipated Kitaev topological spin liquid: the spin-orbit entangled states of Ir(4+) in principle generate precisely the required type of anisotropic exchange. However, other magnetic couplings can drive the system away from the spin-liquid phase. With this in mind, here we disentangle the different magnetic...
متن کاملTopological phases of the Kitaev-Hubbard model at half filling
The Kitaev-Hubbard model of interacting fermions is defined on the honeycomb lattice and, at strong coupling, interpolates between the Heisenberg model and the Kitaev model. It is basically a Hubbard model with ordinary hopping t and spin-dependent hopping t ′. We study this model in the weak to intermediate coupling regime, at half filling, using the cellular dynamical impurity approximation (...
متن کاملSpin-orbit physics of j=1/2 Mott insulators on the triangular lattice
The physics of spin-orbital entanglement in effective j = 1/2 Mott insulators, which have been experimentally observed for various 5d transition metal oxides, has sparked an interest in Heisenberg-Kitaev (HK) models thought to capture their essential microscopic interactions. Here we argue that the recently synthesized Ba3IrTi2O9 is a prime candidate for a microscopic realization of the triangu...
متن کاملMagnetism in spin models for depleted honeycomb-lattice iridates: Spin-glass order towards percolation
Iridates are characterized by a fascinating interplay of spin-orbit and electron-electron interactions. The honeycomb-lattice materials A2IrO3 (A = Na,Li) have been proposed to realize pseudospin-1/2 Mott insulating states with strongly anisotropic exchange interactions, described by the Heisenberg-Kitaev model, but other scenarios involving longer-range exchange interactions or more delocalize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016