Photodissociation dynamics of formyl fluoride (HFCO) at 193 nm: branching ratios and distributions of kinetic energy.

نویسندگان

  • Shih-Huang Lee
  • Chia-Yan Wu
  • Sheng-Kai Yang
  • Yuan-Pern Lee
چکیده

Following photodissociation of formyl fluoride (HFCO) at 193 nm, we detected products with fragmentation translational spectroscopy utilizing a tunable vacuum ultraviolet beam from a synchrotron for ionization. Among three primary dissociation channels observed in this work, the F-elimination channel HFCO-->HCO+F dominates, with a branching ratio approximately 0.66 and an average release of kinetic energy approximately 55 kJ mol(-1); about 17% of HCO further decomposes to H+CO. The H-elimination channel HFCO-->FCO+H has a branching ratio approximately 0.28 and an average release of kinetic energy approximately 99 kJ mol(-1); about 21% of FCO further decomposes to F+CO. The F-elimination channel likely proceeds via the S1 surface whereas the H-elimination channel proceeds via the T1 surface; both channels exhibit moderate barriers for dissociation. The molecular HF-elimination channel HFCO-->HF+CO, correlating with the ground electronic surface, has a branching ratio of only approximately 0.06; the average translational release of 93 kJ mol(-1), approximately 15% of available energy, implies that the fragments are highly internally excited. Detailed mechanisms of photodissociation are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Branching ratios and distributions of kinetic energy

Articles you may be interested in Photodissociation dynamics of vinyl fluoride (C H 2 C H F) at 157 and 193 nm : Distributions of kinetic energy and branching ratios Evidence of C H 2 O (a A 2 3) and C 2 H 4 (a B 1 u 3) produced from photodissociation of 1,3-trimethylene oxide at 193 nm A 193 nm laser photofragmentation time-of-flight mass spectrometric study of chloroiodomethane Following phot...

متن کامل

Near-threshold photodissociation dynamics of CHCl3.

Energy- and angle-resolved photofragment distributions for ground-state Cl ((2)P3/2) and spin-orbit excited Cl* ((2)P1/2) have been recorded using the velocity map imaging technique after photodissociation of chloroform at wavelengths of 193 and ∼235 nm. Translational energy distributions are rather broad and peak between 0.6 and 1.0 eV. The spin-orbit branching ratios [Cl*]/[Cl] are 1 and 0.3 ...

متن کامل

Revisiting the photodissociation dynamics of the phenyl radical.

We have reinvestigated the photodissociation dynamics of the phenyl radical at 248 nm and 193 nm via photofragment translational spectroscopy under a variety of experimental conditions aimed at reducing the nascent internal energy of the phenyl radical and eliminating signal from contaminants. Under these optimized conditions, slower translational energy (P(E(T))) distributions for H-atom loss ...

متن کامل

Photodissociation dynamics of nitrobenzene and o-nitrotoluene.

Photodissociation of nitrobenzene at 193, 248, and 266 nm and o-nitrotoluene at 193 and 248 nm was investigated separately using multimass ion imaging techniques. Fragments corresponding to NO and NO(2) elimination from both nitrobenzene and o-nitrotoluene were observed. The translational energy distributions for the NO elimination channel show bimodal distributions, indicating two dissociation...

متن کامل

Photodissociation of isobutene at 193 nm.

The collisionless photodissociation dynamics of isobutene (i-C(4)H(8)) at 193 nm via photofragment translational spectroscopy are reported. Two major photodissociation channels were identified: H + C(4)H(7) and CH(3) + CH(3)CCH(2). Translational energy distributions indicate that both channels result from statistical decay on the ground state surface. Although the CH(3) loss channel lies 13 kca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 7  شماره 

صفحات  -

تاریخ انتشار 2005