Structural plasticity of Cid1 provides a basis for its distributive RNA terminal uridylyl transferase activity

نویسندگان

  • Luke A. Yates
  • Benjamin P. Durrant
  • Sophie Fleurdépine
  • Karl Harlos
  • Chris J. Norbury
  • Robert J.C. Gilbert
چکیده

Terminal uridylyl transferases (TUTs) are responsible for the post-transcriptional addition of uridyl residues to RNA 3' ends, leading in some cases to altered stability. The Schizosaccharomyces pombe TUT Cid1 is a model enzyme that has been characterized structurally at moderate resolution and provides insights into the larger and more complex mammalian TUTs, ZCCHC6 and ZCCHC11. Here, we report a higher resolution (1.74 Å) crystal structure of Cid1 that provides detailed evidence for uracil selection via the dynamic flipping of a single histidine residue. We also describe a novel closed conformation of the enzyme that may represent an intermediate stage in a proposed product ejection mechanism. The structural insights gained, combined with normal mode analysis and biochemical studies, demonstrate that the plasticity of Cid1, particularly about a hinge region (N164-N165), is essential for catalytic activity, and provide an explanation for its distributive uridylyl transferase activity. We propose a model clarifying observed differences between the in vitro apparently processive activity and in vivo distributive monouridylylation activity of Cid1. We suggest that modulating the flexibility of such enzymes-for example by the binding of protein co-factors-may allow them alternatively to add single or multiple uridyl residues to the 3' termini of RNA molecules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of U insertion RNA editing in trypanosome mitochondria: the bimodal TUTase activity of the core complex.

Expression of the trypanosomal mitochondrial genome requires the insertion and deletion of uridylyl residues at specific sites in pre-mRNAs. RET2 terminal uridylyl transferase is an integral component of the RNA editing core complex (RECC) and is responsible for the guide-RNA-dependent U insertion reaction. By analyzing RNA-interference-based knock-in Trypanosoma brucei cell lines, purified edi...

متن کامل

Poliovirus replicase stimulation by terminal uridylyl transferase.

In an in vitro poliovirus replication system, purified viral polymerase, plus sense virion RNA, and a host factor have been previously shown to be necessary for the transcription of minus strands. We have found that a partially purified eukaryotic initiation factor-2 (eIF-2) fraction from rabbit reticulocytes can replace HeLa host factor in the replicase reaction. This enzyme preparation contai...

متن کامل

RNA-editing terminal uridylyl transferase 1: identification of functional domains by mutational analysis.

The catalytic, RNA-binding and oligomerization domains of the RNA-editing terminal uridylyl transferase 1 (RET1) from Leishmania tarentolae mitochondria were characterized by mutational analysis. Significant N- and C-terminal portions of the protein were found to be dispensable for UTP polymerization in vitro. Changes of conserved amino acids in the active site demonstrated a general similarity...

متن کامل

A critical switch in the enzymatic properties of the Cid1 protein deciphered from its product-bound crystal structure

The addition of uridine nucleotide by the poly(U) polymerase (PUP) enzymes has a demonstrated impact on various classes of RNAs such as microRNAs (miRNAs), histone-encoding RNAs and messenger RNAs. Cid1 protein is a member of the PUP family. We solved the crystal structure of Cid1 in complex with non-hydrolyzable UMPNPP and a short dinucleotide compound ApU. These structures revealed new residu...

متن کامل

A highly specific terminal uridylyl transferase modifies the 3'-end of U6 small nuclear RNA

HeLa cell extracts contain significant amounts of terminal uridylyl transferase (TUTase) activity. In a template-independent reaction with labeled UTP, these enzymes are capable of modifying a broad spectrum of cellular RNA molecules in vitro . However, fractionation of cell extracts by gel filtration clearly separated two independent activities. In addition to a non-specific enzyme, an additio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015