Stochastic Partial Differential Equations with Dirichlet White-noise Boundary Conditions

نویسندگان

  • Elisa ALÒS
  • Stefano BONACCORSI
چکیده

– The paper is devoted to one-dimensional nonlinear stochastic partial differential equations of parabolic type with non homogeneous Dirichlet boundary conditions of white-noise type. We formulate a set of conditions that a random field must satisfy to solve the equation. We show that a unique solution exists and that we can write it in terms of the stochastic kernel related to the problem. This formulation allows us to study the basic properties of the solution, as the continuity and the boundary-layer behavior, by means of Malliavin calculus.  2002 Éditions scientifiques et médicales Elsevier SAS AMS classification: 60H15; 60H07 RÉSUMÉ. – Cet article est consacré à l’étude d’équations aux dérivées partielles stochastiques non linéaires paraboliques en dimension un avec conditions aux bord de type Dirichlet non homogènes. Nous formulons des conditions qu’un champ aléatoire doit satisfaire pour resoudre l’EDPS. Nous montrons qu’il existe une solution unique et qu’elle s’exprime à l’aide d’un noyau stochastique relié au problème. Cette formulation nous permet d’étudier les propriétés de base de la solution, telles que la continuité et le comportement au bord, en utilisant le calcul de Malliavin.  2002 Éditions scientifiques et médicales Elsevier SAS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stochastic Optimal Control Problem for the Heat Equation on the Halfline with Dirichlet Boundary-noise and Boundary-control

We consider a controlled state equation of parabolic type on the halfline (0,+∞) with boundary conditions of Dirichlet type in which the unknown is equal to the sum of the control and of a white noise in time. We study finite horizon and infinite horizon optimal control problem related by menas of backward stochastic differential equations.

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

A Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates

This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...

متن کامل

Dirichlet series and approximate analytical solutions of MHD flow over a linearly stretching ‎sheet

The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002