Some Architectures for Chebyshev Interpolation
نویسنده
چکیده
Digital architectures for Chebyshev interpolation are explored and a variation which is word-serial in nature is proposed. These architectures are contrasted with equispaced system structures. Further, Chebyshev interpolation scheme is compared to the conventional equispaced interpolation vis-á-vis reconstruction error and relative number of samples. It is also shown that the use of a hybrid (or dual) Analog to Digital converter unit can reduce system power consumption by as much as 1/3 of the original.
منابع مشابه
Generalized Chebyshev polynomials of the second kind
We characterize the generalized Chebyshev polynomials of the second kind (Chebyshev-II), and then we provide a closed form of the generalized Chebyshev-II polynomials using the Bernstein basis. These polynomials can be used to describe the approximation of continuous functions by Chebyshev interpolation and Chebyshev series and how to efficiently compute such approximations. We conclude the pap...
متن کاملRational Interpolation at Chebyshev points
The Lanczos method and its variants can be used to solve eeciently the rational interpolation problem. In this paper we present a suitable fast modiication of a general look-ahed version of the Lanczos process in order to deal with polynomials expressed in the Chebyshev orthogonal basis. The proposed approach is particularly suited for rational interpolation at Chebyshev points, that is, at the...
متن کاملA comparison of interpolation grids over the triangle or the tetrahedron
A simple strategy for constructing a sequence of increasingly refined interpolation grids over the triangle or the tetrahedron is discussed with the goal of achieving uniform convergence and ensuring high interpolation accuracy. The interpolation nodes are generated based on a one-dimensional master grid comprised of the zeros of the Lobatto, Legendre, Chebyshev, and second-kind Chebyshev polyn...
متن کاملSparse polynomial interpolation in Chebyshev bases
We study the problem of reconstructing a sparse polynomial in a basis of Chebyshev polynomials (Chebyshev basis in short) from given samples on a Chebyshev grid of [−1, 1]. A polynomial is called M -sparse in a Chebyshev basis, if it can be represented by a linear combination of M Chebyshev polynomials. For a polynomial with known and unknown Chebyshev sparsity, respectively, we present efficie...
متن کاملAn Algorithm Based on the Fft for a Generalized Chebyshev Interpolation
An algorithm for a generalized Chebyshev interpolation procedure, increasing the number of sample points more moderately than doubling, is presented. The FFT for a real sequence is incorporated into the algorithm to enhance its efficiency. Numerical comparison with other existing algorithms is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1001.1185 شماره
صفحات -
تاریخ انتشار 2010