FANRE: A Fast Adaptive Neural Regression Estimator
نویسندگان
چکیده
In this paper, a fast adaptive neural regression estimator named FANRE is proposed. FANRE exploits the advantages of both Adaptive Resonance Theory and Field Theory while contraposing the characteristic of regression problems. It achieves not only impressive approximating results but also fast learning speed. Besides, FANRE has incremental learning ability. When new instances are fed, it does not need retrain the whole training set. In stead, it could learn the knowledge encoded in those instances through slightly adjusting the network topology when necessary. This characteristic enable FANRE work for real-time online learning tasks. Experiments including approximating line, sine and 2-d Mexican Hat show that FANRE is superior to BP kind algorithms that are most often used in regression estimation on both approximating effect and training time cost.
منابع مشابه
A Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملHarmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کاملAdaptive neural control of nonlinear fractional order multi- agent systems in the presence of error constraintion
In this paper, the problem of fractional order multi-agent tracking control problem is considered. External disturbances, uncertainties, error constraints, transient response suitability and desirable response tracking problems are the challenges in this study. Because of these problems and challenges, an adaptive control and neural estimator approaches are used in this study. In the first part...
متن کاملDesign of a Robust and Adaptive Sensorless Speed Controller for Induction Motor Drives Using General regression Neural Network Based Fuzzy Approach
The main purpose of this paper is to apply the Fuzzy based General Regression Neural Network (FGRNN) to the speed control of induction motor. A General Regression Neural Network (GRNN) is adopted to estimate the motor speed and thus provide a sensorless speed estimator system. The performance of the proposed FGRNN speed controller is evaluated for a wide range of operating conditions for induct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999