A q-analogue of Zhang's binomial coefficient identities
نویسندگان
چکیده
In this paper, we prove some identities for the alternating sums of squares and cubes of the partial sum of the q-binomial coefficients. Our proof also leads to a q-analogue of the sum of the first n squares due to Schlosser.
منابع مشابه
A q-Analogue of some Binomial Coefficient Identities of Y. Sun
We give a q-analogue of some binomial coefficient identities of Y. Sun [Electron.
متن کاملOn P,q-binomial Coefficients
In this paper, we develop the theory of a p, q-analogue of the binomial coefficients. Some properties and identities parallel to those of the usual and q-binomial coefficients will be established including the triangular, vertical, and the horizontal recurrence relations, horizontal generating function, and the orthogonality and inverse relations. The construction and derivation of these result...
متن کاملCombinatorial proofs of a kind of binomial and q-binomial coefficient identities
We give combinatorial proofs of some binomial and q-binomial identities in the literature, such as ∞ ∑ k=−∞ (−1)kq(9k2+3k)/2 [ 2n n + 3k ] = (1 + q) n−1 ∏ k=1 (1 + q + q) (n ≥ 1),
متن کاملSome Identities involving the Partial Sum of q-Binomial Coefficients
We give some identities involving sums of powers of the partial sum of q-binomial coefficients, which are q-analogues of Hirschhorn’s identities [Discrete Math. 159 (1996), 273–278] and Zhang’s identity [Discrete Math. 196 (1999), 291–298].
متن کاملCatalan Triangle Numbers and Binomial Coefficients
The binomial coefficients and Catalan triangle numbers appear as weight multiplicities of the finite-dimensional simple Lie algebras and affine Kac–Moody algebras. We prove that any binomial coefficient can be written as weighted sums along rows of the Catalan triangle. The coefficients in the sums form a triangular array, which we call the alternating Jacobsthal triangle. We study various subs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009