Families of strongly projective graphs
نویسنده
چکیده
We give several characterisations of strongly projective graphs which generalise in many respects odd cycles and complete graphs [7]. We prove that all known families of projective graphs contain only strongly projective graphs, including complete graphs, odd cycles, Kneser graphs and non-bipartite distance-transitive graphs of diameter d ≥ 3.
منابع مشابه
Complexes of $C$-projective modules
Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule $C$, $C$--perfect complexes have the ability to detect when a ring is strongly regular.It is shown that there exists a class of modules which admit minimal resolutions of $C$--projective modules.
متن کاملGraphs embedded into finite projective planes
We study embeddings of graphs in finite projective planes, and present related results for some families of graphs including complete graphs and complete bipartite graphs. We also make connections between embeddings of graphs and the existence of certain substructures in a plane, such as Baer subplanes and arcs.
متن کاملRing geometries, two-weight codes, and strongly regular graphs
It is known that a linear two-weight code C over a finite field Fq corresponds both to a multiset in a projective space over Fq that meets every hyperplane in either a or b points for some integers a < b , and to a strongly regular graph whose vertices may be identified with the codewords of C . Here we extend this classical result to the case of a ring-linear code with exactly two nonzero homo...
متن کامل$n$-Array Jacobson graphs
We generalize the notion of Jacobson graphs into $n$-array columns called $n$-array Jacobson graphs and determine their connectivities and diameters. Also, we will study forbidden structures of these graphs and determine when an $n$-array Jacobson graph is planar, outer planar, projective, perfect or domination perfect.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 22 شماره
صفحات -
تاریخ انتشار 2002