Differences in microbial metabolites in urine headspace of subjects with Immune Thrombocytopenia (ITP) detected by volatile organic compound (VOC) analysis and metabolomics.
نویسندگان
چکیده
ITP is an organ-specific autoimmune disorder characterised by a low platelet count whose cause is uncertain. A possible factor is food intolerance, although much of the information linking this with ITP is anecdotal. The role of food intolerance in ITP was studied by replacing a normal diet with an elemental diet (E028), but this did not increase platelet counts. Clear differences, however, were apparent between the volatile organic compounds (VOCs) in the urine headspace of patients with ITP and those present in healthy volunteers, which leads to speculation that abnormal metabolic activity of the intestinal microbiome may be a factor causing ITP. However, further work is needed to confirm this. There were also differences between the VOCs of patients on a normal diet and those on the elemental diet, and in this case, the VOCs involved are very likely to be of bacterial origin, as their production is affected by dietary manipulation. Many of these VOCs are known to be toxic.
منابع مشابه
Solid-Phase Microextraction and the Human Fecal VOC Metabolome
The diagnostic potential and health implications of volatile organic compounds (VOCs) present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME) has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and a...
متن کاملVolatile organic compounds as new biomarkers for colorectal cancer: a review.
Analysis of the volatile part of the metabolome (volatile organic compounds, VOC) present in the gas phase of excreted materials is a promising new screening tool for several cancers, including colorectal cancer (CRC). The VOC signature can reflect health status, like a 'fingerprint', and can be modified in several diseases. Technical difficulties still limit the widespread use of VOC analysis ...
متن کاملIdentification of volatile organic compounds of some Trichoderma species using static headspace gas chromatography-mass spectrometry
Fungi release wide spectrum of volatile organic compounds (VOCs) that belong to several chemical groups with different biochemical origins such as monoterpenes, sesquiterpenes, alcohols, aldehydes, aromatic compounds, esters, furans, ketones, sulfur and nitrogen compounds. Trichoderma species are the most studied fungal biocontrol agents and are successfully used as biofungicides and biofertili...
متن کاملIdentification of Volatile Organic Compounds from Trichoderma virens (6011) by GC-MS and Separation of a Bioactive Compound via Nanotechnology
Fungal volatile organic compounds (VOCs) have the potential of being used as biocontrol agents for biotechnological applications in agriculture, industry and medicine. In this research, different VOCs from secondary metabolites of biocontrol fungus Trichoderma virens (6011) KP671477 were separated using n-hexane, n-butanol and methanol solvents and identified by gas chromatography–mass spectrom...
متن کاملAnalysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace–multi-capillary column–gas chromatography–ion mobility spectrometry (SHS–MCC–GC–IMS)
Listeria monocytogenes is a Gram-positive bacterium and an opportunistic food-borne pathogen which poses significant risk to the immune-compromised and pregnant due to the increased likelihood of acquiring infection and potential transmission of infection to the unborn child. Conventional methods of analysis suffer from either long turn-around times or lack the ability to discriminate between L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinica chimica acta; international journal of clinical chemistry
دوره 461 شماره
صفحات -
تاریخ انتشار 2016