Finite element assembly strategies on multi- and many-core architectures
نویسندگان
چکیده
We demonstrate that radically differing implementations of finite element methods are needed on multicore (CPU) and many-core (GPU) architectures, if their respective performance potential is to be realised. Our experimental investigations using a finite element advection-diffusion solver show that increased performance on each architecture can only be achieved by committing to specific and diverse algorithmic choices that cut across the high-level structure of the implementation. Making these commitments to achieve high performance for a single architecture leads to a loss of performance portability. Data structures that include redundant data but enable coalesced memory accesses are faster on many-core architectures, whereas redundancy-free data structures that are accessed indirectly are faster on multi-core architectures. The Addto algorithm for global assembly is optimal on multi-core architectures, whereas the Local Matrix Approach is optimal on many-core architectures despite requiring more computation than the Addto algorithm. These results demonstrate the value in making the correct choice of algorithm and data structure when implementing finite element methods, spectral element methods and low-order discontinuous Galerkin methods on modern high-performance architectures. Copyright c © 2011 John Wiley & Sons, Ltd.
منابع مشابه
Using Hybrid Parallel Programming Techniques for the Computation, Assembly and Solution Stages in Finite Element Codes
The so called “hybrid parallelism paradigm”, that combines programming techniques for architectures with distributed and shared memories using MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) standards, is currently adopted to exploit the growing use of multi-core computers, thus improving the efficiency of codes in such architectures (several multi-core nodes or clustered sym...
متن کاملScalability of parallel finite element algorithms on multi-core platforms
The speedup of element-by-element FEM algorithms depends not only on peak processor performance but also on access time to shared mesh data. Eliminating memory boundness would significantly speed up unstructured mesh computations on hybrid multi-core architectures, where the gap between processor and memory performance continues to grow. The speedup can be achieved by ordering unknowns so that ...
متن کاملAssembly Operations for Multicore Architectures Using Task-Based Runtime Systems
Traditionally, numerical simulations based on finite element methods consider the algorithm as being divided in three major steps: the generation of a set of blocks and vectors, the assembly of these blocks in a matrix and a big vector, and the inversion of the matrix. In this paper we tackle the second step, the block assembly, where no parallel algorithm is widely available. Several strategie...
متن کاملA Multi-Physics Simulation Model Based on Finite Element Method for the Multi-Layer Switched Reluctance Motor
Using ANSYS finite element (FE) package, a multi-physics simulation model based on finite element method (FEM) is introduced for the multi-layer switched reluctance motor (SRM) in the present paper. The simulation model is created totally in ANSYS parametric design language (APDL) as a parametric model usable for various conventional types of this motor and it is included electromagnetic, therm...
متن کاملOptimal Design of Sandwich Panels Using Multi-Objective Genetic Algorithm and Finite Element Method
Low weight and high load capacity are remarkable advantages of sandwich panels with corrugated core, which make them more considerable by engineering structure designers. It’s important to consider the limitations such as yielding and buckling as design constraints for optimal design of these panels. In this paper, multi-objective optimization of sandwich panels with corrugated core is carried ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011