A Finite Element Method for Viscous Incompressible Thermal Flows
نویسنده
چکیده
A finite element method for steady-state viscous incompressible thermal flows has been developed. The finite element equations are derived from a set of coupled nonlinear Navier-Stokes equations that consists of the conservation of mass, momentum, and energy equations. These derived finite element equations are validated by developing a corresponding finite element computer program that can be executed on standard personal computers. The developed finite element formulation has been evaluated by solving viscous incompressible thermal flows past irregular geometries with different boundary conditions.
منابع مشابه
Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation
A review of recent work and new developments are presented for the penalty-function, finite element formulation of incompressible viscous flows. Basic features of the penalty method are described in the context of the steady and unsteady Navier-Stokes equations. Galerkin and “upwind” treatments of convection terms are discussed. Numerical results indicate the versatility and effectiveness of th...
متن کاملGauge finite element method for incompressible flows
A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J-G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that aris...
متن کاملLeast Squares Finite Element Methods for Viscous, Incompressible Flows
This paper is concerned with finite element methods of least-squares type for the approximate numerical solution of incompressible, viscous flow problems. Our main focus is on issues that are critical for the success of the finite element methods, such as decomposition of the Navier-Stokes equations into equivalent first-order systems, mathematical prerequisites for the optimality of the method...
متن کاملExternal and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملApplication of Barycenter Refined Meshes in Linear Elasticity and Incompressible Fluid Dynamics
The paper demonstrates that enhanced stability properties of some finite element methods on barycenter refined meshes enables efficient numerical treatment of problems involving incompressible or nearly incompressible media. One example is the linear elasticity problem in a pure displacement formulation, where a lower order finite element method is studied which is optimal order accurate and ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004