Triangulations and a generalization of Bose's method

نویسندگان

  • Charles J. Colbourn
  • Feliu Sagols
چکیده

We present a nontrivial extension to Bose's method for the construction of Steiner triple systems, generalizing the traditional use of commutative and idempotent quasi-groups to employ a new algebraic structure called a 3-triangulation. Links between Steiner triple systems and 2-(v,3,3) designs via 3-triangulations are also explored.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

International Journal of Computational Geometry & Applications

Deciding 3-colorability for general plane graphs is known to be an NP-complete problem. 31 However, for certain families of graphs, like triangulations, polynomial time algorithms 32 exist. We consider the family of pseudo-triangulations, which are a generalization of 33 triangulations, and prove NP-completeness for this class. This result also holds if we 34 bound their face degree to four, or...

متن کامل

Pseudo-tetrahedral complexes

A pseudo-triangulation is a cell complex in the plane whose cells are pseudo-triangles, i.e., simple polygons with exactly three convex vertices (so-called corners). Being an interesting and flexible generalization of triangulations, pseudo-triangulations have found their place in computational geometry; see e.g. [8, 11, 7, 1] and references therein. Unlike triangulations, pseudo-triangulations...

متن کامل

k-NORMAL SURFACES

Following Matveev, a k-normal surface in a triangulated 3-manifold is a generalization of both normal and (octagonal) almost normal surfaces. Using spines, complexity, and Turaev-Viro invariants of 3-manifolds, we prove the following results: • a minimal triangulation of a closed irreducible or a bounded hyperbolic 3-manifold contains no non-trivial k-normal sphere; • every triangulation of a c...

متن کامل

Dynamic Delaunay tetrahedralizations and Voronoi tessellations in three dimensions

We describe the implementation of an incremental insertion algorithm to construct and maintain three-dimensional Delaunay triangulations with dynamic vertices using a three-simplex data structure. The code is capable of constructing the geometric dual, the Voronoi or Dirichlet tesselation. A given list of generators is triangulated and volumes as well as contact surfaces of the Dirichlet region...

متن کامل

Bijections for Planar Maps with Boundaries

We present bijections for planar maps with boundaries. In particular, we obtain bijections for triangulations and quadrangulations of the sphere with boundaries of prescribed lengths. For triangulations we recover the beautiful factorized formula obtained by Krikun using a (technically involved) generating function approach. The analogous formula for quadrangulations is new. We also obtain a fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 237  شماره 

صفحات  -

تاریخ انتشار 2001