Triangulations and a generalization of Bose's method
نویسندگان
چکیده
We present a nontrivial extension to Bose's method for the construction of Steiner triple systems, generalizing the traditional use of commutative and idempotent quasi-groups to employ a new algebraic structure called a 3-triangulation. Links between Steiner triple systems and 2-(v,3,3) designs via 3-triangulations are also explored.
منابع مشابه
International Journal of Computational Geometry & Applications
Deciding 3-colorability for general plane graphs is known to be an NP-complete problem. 31 However, for certain families of graphs, like triangulations, polynomial time algorithms 32 exist. We consider the family of pseudo-triangulations, which are a generalization of 33 triangulations, and prove NP-completeness for this class. This result also holds if we 34 bound their face degree to four, or...
متن کاملPseudo-tetrahedral complexes
A pseudo-triangulation is a cell complex in the plane whose cells are pseudo-triangles, i.e., simple polygons with exactly three convex vertices (so-called corners). Being an interesting and flexible generalization of triangulations, pseudo-triangulations have found their place in computational geometry; see e.g. [8, 11, 7, 1] and references therein. Unlike triangulations, pseudo-triangulations...
متن کاملk-NORMAL SURFACES
Following Matveev, a k-normal surface in a triangulated 3-manifold is a generalization of both normal and (octagonal) almost normal surfaces. Using spines, complexity, and Turaev-Viro invariants of 3-manifolds, we prove the following results: • a minimal triangulation of a closed irreducible or a bounded hyperbolic 3-manifold contains no non-trivial k-normal sphere; • every triangulation of a c...
متن کاملDynamic Delaunay tetrahedralizations and Voronoi tessellations in three dimensions
We describe the implementation of an incremental insertion algorithm to construct and maintain three-dimensional Delaunay triangulations with dynamic vertices using a three-simplex data structure. The code is capable of constructing the geometric dual, the Voronoi or Dirichlet tesselation. A given list of generators is triangulated and volumes as well as contact surfaces of the Dirichlet region...
متن کاملBijections for Planar Maps with Boundaries
We present bijections for planar maps with boundaries. In particular, we obtain bijections for triangulations and quadrangulations of the sphere with boundaries of prescribed lengths. For triangulations we recover the beautiful factorized formula obtained by Krikun using a (technically involved) generating function approach. The analogous formula for quadrangulations is new. We also obtain a fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 237 شماره
صفحات -
تاریخ انتشار 2001