Differential Equations Driven by Gaussian Signals I
نویسندگان
چکیده
We consider multi-dimensional Gaussian processes and give a new condition on the covariance, simple and sharp, for the existence of Lévy area(s). Gaussian rough paths are constructed with a variety of weak and strong approximation results. Together with a new RKHS embedding, we obtain a powerful yet conceptually simple framework in which to analysize differential equations driven by Gaussian signals in the rough paths sense.
منابع مشابه
Differential Equations Driven by Gaussian Signals II
Large classes of multi-dimensional Gaussian processes can be enhanced with stochastic Lévy area(s). In a previous paper, we gave sufficient and essentially necessary conditions, only involving variational properties of the covariance. Following T. Lyons, the resulting lift to a ”Gaussian rough path” gives a robust theory of (stochastic) differential equations driven by Gaussian signals with sam...
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
From Rough Path Estimates to Multilevel Monte Carlo
Discrete approximations to solutions of stochastic differential equations are wellknown to converge with “strong” rate 1/2. Such rates have played a key-role in Giles’ multilevel Monte Carlo method [Giles, Oper. Res. 2008] which gives a substantial reduction of the computational effort necessary for the evaluation of diffusion functionals. In the present article similar results are established ...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملar X iv : 0 70 8 . 37 30 v 1 [ m at h . PR ] 2 8 A ug 2 00 7 DENSITIES FOR ROUGH DIFFERENTIAL EQUATIONS UNDER HÖRMANDER ’ S CONDITION
We consider stochastic differential equations dY = V (Y ) dX driven by a multidimensional Gaussian process X in the rough path sense. Using Malliavin Calculus we show that Yt admits a density for t ∈ (0, T ] provided (i) the vector fields V = (V1, ..., Vd) satisfy Hörmander’s condition and (ii) the Gaussian driving signal X satisfies certain conditions. Examples of driving signals include fract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007