Efficient transitive closure of sparse matrices over closed semirings
نویسنده
چکیده
منابع مشابه
Transitive Closure and Related Semiring Properties via Eliminants
Closed semirings are algebraic structures that provide a unified approach to a number of seemingly unrelated problems of computer science and operations research. For example, semirings can be used to describe the algebra related to regular expressions, graph-theoretical path problems, and linear equations. We present a new axiomatic formulation of semirings. We introduce the concept of elimina...
متن کاملDistributive Lattices of λ-simple Semirings
In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left $k$-radicals $Lambda(a)={x in S | a stackrel{l}{longrightarrow^{infty}} x}$ induced by the transitive closure $stackrel{l}{longrightarrow^{infty}}$ of the relation $stackrel{l}{longrightarrow}$ which induce the equivalence relation $lambda$. Again non-transit...
متن کاملTransitive closure according to Roy-Floyd-Warshall
This formulation of the Roy-Floyd-Warshall algorithm for the transitive closure bypasses matrices and arrays, but uses a more direct mathematical model with adjacency functions for immediate predecessors and successors. This can be implemented efficiently in functional programming languages and is particularly adequate for sparse relations.
متن کاملDynamic Sparse-Matrix Allocation on GPUs
Sparse matrices are a core component in many numerical simulations, and their efficiency is essential to achieving high performance. Dynamic sparse-matrix allocation (insertion) can benefit a number of problems such as sparse-matrix factorization, sparse-matrix-matrix addition, static analysis (e.g., points-to analysis), computing transitive closure, and other graph algorithms. Existing sparse-...
متن کاملCharacterizing weighted MSO for trees by branching transitive closure logics
We introduce the branching transitive closure operator on weighted monadic second-order logic formulas where the branching corresponds in a natural way to the branching inherent in trees. For arbitrary commutative semirings, we prove that weighted monadic second order logics on trees is equivalent to the definability by formulas which start with one of the following operators: (i) a branching t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 354 شماره
صفحات -
تاریخ انتشار 2006