Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay.

نویسندگان

  • Bronwyn A Lucas
  • Eitan Lavi
  • Lily Shiue
  • Hana Cho
  • Sol Katzman
  • Keita Miyoshi
  • Mikiko C Siomi
  • Liran Carmel
  • Manuel Ares
  • Lynne E Maquat
چکیده

Primate-specific Alu short interspersed elements (SINEs) as well as rodent-specific B and ID (B/ID) SINEs can promote Staufen-mediated decay (SMD) when present in mRNA 3'-untranslated regions (3'-UTRs). The transposable nature of SINEs, their presence in long noncoding RNAs, their interactions with Staufen, and their rapid divergence in different evolutionary lineages suggest they could have generated substantial modification of posttranscriptional gene-control networks during mammalian evolution. Some of the variation in SMD regulation produced by SINE insertion might have had a similar regulatory effect in separate mammalian lineages, leading to parallel evolution of the Staufen network by independent expansion of lineage-specific SINEs. To explore this possibility, we searched for orthologous gene pairs, each carrying a species-specific 3'-UTR SINE and each regulated by SMD, by measuring changes in mRNA abundance after individual depletion of two SMD factors, Staufen1 (STAU1) and UPF1, in both human and mouse myoblasts. We identified and confirmed orthologous gene pairs with 3'-UTR SINEs that independently function in SMD control of myoblast metabolism. Expanding to other species, we demonstrated that SINE-directed SMD likely emerged in both primate and rodent lineages >20-25 million years ago. Our work reveals a mechanism for the convergent evolution of posttranscriptional gene regulatory networks in mammals by species-specific SINE transposition and SMD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonsense-mediated mRNA decay among coagulation factor genes

Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...

متن کامل

Staufen: from embryo polarity to cellular stress and neurodegeneration.

Staufen is a double-stranded RNA-binding protein that forms RNA granules by RNA-dependent and -independent interactions. Staufen was initially described in Drosophila as a key molecule for targeting maternal mRNAs. In vertebrates, two highly similar paralogs with several splicing variants mediate mRNA transport, thus affecting neuron plasticity, learning and memory. Staufen also regulates trans...

متن کامل

Glucocorticoid receptor interacts with PNRC2 in a ligand-dependent manner to recruit UPF1 for rapid mRNA degradation.

Glucocorticoid receptor (GR), which was originally known to function as a nuclear receptor, plays a role in rapid mRNA degradation by acting as an RNA-binding protein. The mechanism by which this process occurs remains unknown. Here, we demonstrate that GR, preloaded onto the 5'UTR of a target mRNA, recruits UPF1 through proline-rich nuclear receptor coregulatory protein 2 (PNRC2) in a ligand-d...

متن کامل

Mammalian Staufen1 Recruits Upf1 to Specific mRNA 3′UTRs so as to Elicit mRNA Decay

Mammalian Staufen (Stau)1 is an RNA binding protein that is thought to function in mRNA transport and translational control. Nonsense-mediated mRNA decay (NMD) degrades abnormal and natural mRNAs that terminate translation sufficiently upstream of a splicing-generated exon-exon junction. Here we describe an mRNA decay mechanism that involves Stau1, the NMD factor Upf1, and a termination codon. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 115 5  شماره 

صفحات  -

تاریخ انتشار 2018