Malware detection: program run length against detection rate
نویسندگان
چکیده
N-gram analysis is an approach that investigates the structure of a program using bytes, characters or text strings. This research uses dynamic analysis to investigate malware detection using a classification approach based on N-gram analysis. A key issue with dynamic analysis is the length of time a program has to be run to ensure a correct classification. The motivation for this research is to find the optimum subset of operational codes (opcodes) that make the best indicators of malware and to determine how long a program has to be monitored to ensure an accurate support vector machine (SVM) classification of benign and malicious software. The experiments within this study represent programs as opcode density histograms gained through dynamic analysis for different program run periods. A SVM is used as the program classifier to determine the ability of different program run lengths to correctly determine the presence of malicious software. The findings show that malware can be detected with different program run lengths using a small number of opcodes.
منابع مشابه
DyVSoR: dynamic malware detection based on extracting patterns from value sets of registers
To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...
متن کاملMalware Detection using Windows API Sequence and Machine Learning
Monitoring the behavior of program execution at run-time is widely used to differentiate benign and malicious processes executing in the host computer. Most of the existing run-time malware detection methods use the information available in Windows Application Programming Interface (API) calls. The proposed malware detection system uses the Windows API call sequence. A 3rd order Markov chain (i...
متن کاملMalware Detection using Classification of Variable-Length Sequences
In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. Acco...
متن کاملIn-execution dynamic malware analysis and detection by mining information in process control blocks of Linux OS
Run-time behavior of processes – running on an end-host – is being actively used to dynamically detect malware. Most of these detection schemes build model of run-time behavior of a process on the basis of its data flow and/or sequence of system calls. These novel techniques have shown promising results but an efficient and effective technique must meet the following performance metrics: (1) hi...
متن کاملFEEBO: An Empirical Evaluation Framework for Malware Behavior Obfuscation
Program obfuscation is increasingly popular among malware creators. Objectively comparing different malware detection approaches with respect to their resilience against obfuscation is challenging. To the best of our knowledge, there is no common empirical framework for evaluating the resilience of malware detection approaches w.r.t. behavior obfuscation. We propose and implement such a framewo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IET Software
دوره 8 شماره
صفحات -
تاریخ انتشار 2014